{"title":"S100A4 a classical DAMP as a therapeutic target in fibrosis","authors":"Steven O'Reilly","doi":"10.1016/j.matbio.2024.01.002","DOIUrl":null,"url":null,"abstract":"<div><p>Fibrosis regardless of aetiology is characterised by persistently activated myofibroblasts that are contractile and secrete excessive amounts of extracellular matrix molecules that leads to loss of organ function. Damage-Associated Molecular Patterns (DAMPs) are endogenous host-derived molecules that are released from cells dying or under stress that can be triggered by a variety of insults, either chemical or physical, leading to an inflammatory response. Among these DAMPs is S100A4, part of the S100 family of calcium binding proteins that participate in a variety of cellular processes. S100A4 was first described in context of cancer as a pro-metastatic factor. It is now appreciated that aside from its role in cancer promotion, S100A4 is intimately involved in tissue fibrosis. The extracellular form of S100A4 exerts its effects through multiple receptors including Toll-Like Receptor 4 and RAGE to evoke signalling cascades involving downstream mediators facilitating extracellular matrix deposition and myofibroblast generation and can play a role in persistent activation of myofibroblasts. S100A4 may be best understood as an amplifier of inflammatory and fibrotic processes. S100A4 appears critical in systemic sclerosis pathogenesis and blocking the extracellular form of S100A4 in vivo in various animal models of disease mitigates fibrosis and may even reverse established disease. This review appraises S100A4’s position as a DAMP and its role in fibrotic conditions and highlight therapeutically targeting this protein to halt fibrosis, suggesting that it is a tractable target.</p></div>","PeriodicalId":49851,"journal":{"name":"Matrix Biology","volume":"127 ","pages":"Pages 1-7"},"PeriodicalIF":4.5000,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matrix Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0945053X24000027","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Fibrosis regardless of aetiology is characterised by persistently activated myofibroblasts that are contractile and secrete excessive amounts of extracellular matrix molecules that leads to loss of organ function. Damage-Associated Molecular Patterns (DAMPs) are endogenous host-derived molecules that are released from cells dying or under stress that can be triggered by a variety of insults, either chemical or physical, leading to an inflammatory response. Among these DAMPs is S100A4, part of the S100 family of calcium binding proteins that participate in a variety of cellular processes. S100A4 was first described in context of cancer as a pro-metastatic factor. It is now appreciated that aside from its role in cancer promotion, S100A4 is intimately involved in tissue fibrosis. The extracellular form of S100A4 exerts its effects through multiple receptors including Toll-Like Receptor 4 and RAGE to evoke signalling cascades involving downstream mediators facilitating extracellular matrix deposition and myofibroblast generation and can play a role in persistent activation of myofibroblasts. S100A4 may be best understood as an amplifier of inflammatory and fibrotic processes. S100A4 appears critical in systemic sclerosis pathogenesis and blocking the extracellular form of S100A4 in vivo in various animal models of disease mitigates fibrosis and may even reverse established disease. This review appraises S100A4’s position as a DAMP and its role in fibrotic conditions and highlight therapeutically targeting this protein to halt fibrosis, suggesting that it is a tractable target.
期刊介绍:
Matrix Biology (established in 1980 as Collagen and Related Research) is a cutting-edge journal that is devoted to publishing the latest results in matrix biology research. We welcome articles that reside at the nexus of understanding the cellular and molecular pathophysiology of the extracellular matrix. Matrix Biology focusses on solving elusive questions, opening new avenues of thought and discovery, and challenging longstanding biological paradigms.