首页 > 最新文献

Matrix Biology最新文献

英文 中文
ECM, integrins, and DDRs: A nexus of cancer progression, therapy, and future directions
IF 4.5 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-04-12 DOI: 10.1016/j.matbio.2025.04.002
Md Al Azim, Julie S Di Martino
Collagen is the most abundant protein in mammals, significantly contributing to cancer progression. Cells express two primary well-conserved collagen receptors, integrins and discoidin domain receptors (DDRs), which bind collagen on distinct sites, suggesting that cancer cells must integrate both signals to decide their fate. The crosstalk between integrins and DDRs mediated by collagen binding produces dynamic, integrated signals that control tumor progression, therapeutic resistance, and cancer cell heterogeneity. This review will discuss the dynamic interplay among collagen, integrins, and DDRs in ECM remodeling during cancer progression and these receptors' crosstalk. In addition, we explored current and future directions for ECM receptor-targeted therapies, including nanotechnologies and precision medicine, to improve therapeutic outcomes by establishing a proper balance between integrins and DDRs in cancer.
胶原蛋白是哺乳动物体内含量最高的蛋白质,对癌症的发展有重要作用。细胞表达两种主要的保存完好的胶原蛋白受体--整合素和盘状结构域受体(DDRs),它们在不同的部位结合胶原蛋白,这表明癌细胞必须整合这两种信号才能决定其命运。由胶原蛋白结合介导的整合素和 DDRs 之间的串扰产生了动态的整合信号,控制着肿瘤的进展、治疗抗性和癌细胞的异质性。本综述将讨论癌症进展过程中 ECM 重塑过程中胶原蛋白、整合素和 DDR 之间的动态相互作用以及这些受体之间的串扰。此外,我们还探讨了 ECM 受体靶向疗法的当前和未来发展方向,包括纳米技术和精准医疗,以便通过在癌症中的整合素和 DDR 之间建立适当的平衡来改善治疗效果。
{"title":"ECM, integrins, and DDRs: A nexus of cancer progression, therapy, and future directions","authors":"Md Al Azim,&nbsp;Julie S Di Martino","doi":"10.1016/j.matbio.2025.04.002","DOIUrl":"10.1016/j.matbio.2025.04.002","url":null,"abstract":"<div><div>Collagen is the most abundant protein in mammals, significantly contributing to cancer progression. Cells express two primary well-conserved collagen receptors, integrins and discoidin domain receptors (DDRs), which bind collagen on distinct sites, suggesting that cancer cells must integrate both signals to decide their fate. The crosstalk between integrins and DDRs mediated by collagen binding produces dynamic, integrated signals that control tumor progression, therapeutic resistance, and cancer cell heterogeneity. This review will discuss the dynamic interplay among collagen, integrins, and DDRs in ECM remodeling during cancer progression and these receptors' crosstalk. In addition, we explored current and future directions for ECM receptor-targeted therapies, including nanotechnologies and precision medicine, to improve therapeutic outcomes by establishing a proper balance between integrins and DDRs in cancer.</div></div>","PeriodicalId":49851,"journal":{"name":"Matrix Biology","volume":"138 ","pages":"Pages 27-43"},"PeriodicalIF":4.5,"publicationDate":"2025-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143824042","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Oligomerisation of pentraxin-3: Insights from cryoEM 五胜肽-3的寡聚化:低温电子显微镜的启示。
IF 4.5 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-04-03 DOI: 10.1016/j.matbio.2025.04.001
Antonio Inforzato , Anthony J. Day
Pentraxin-3 (PTX3) is a secreted protein with roles in the stabilisation of hyaluronan-rich extracellular matrices involved in reproductive biology and inflammatory processes, as well as additional functions in innate immunity and cancer. Our recent structural studies (Shah et al., 2025; DOI:10.1016/j.matbio.2025.01.002), involving X-ray crystallography, cryo-electron microscopy (cryoEM) and AlphaFold modelling, have provided clues as to how PTX3 becomes assembled into an octamer from eight identical protomer subunits. Here it was proposed that four protomers initially form a tetramer, composed of a highly extended N-terminal region consisting of coiled-coil structures and C-terminal pentraxin domains, where two tetramers then immediately align and associate via an extensive network of salt bridges, allowing stabilisation of the octamer via the formation of disulphide bonds. However, a paper published around the same time provides an alternative perspective (Guo et al., 2025; DOI: 10.1016/j.ijbiomac.2024.139207). The authors propose, based on cryoEM analyses, that in addition to octamers, stable dimers, tetramers and hexamers of PTX3 can also assemble, where it is the dimers that provide the ‘building blocks’ for generation of the various oligomeric forms. In this commentary we suggest that the presence of dimers, tetramers and hexamers is likely an artefact of the construct used in recombinant expression, since the existence of these oligomers is not consistent with other studies on PTX3. We also provide a model to clarify how protomers become assembled into an octamer via sequential formation of a disulphide-linked tetramer, non-covalent association of two tetramers through aligned ionic interactions and the formation of disulphide bonds between the C-terminal pentraxin domains.
{"title":"Oligomerisation of pentraxin-3: Insights from cryoEM","authors":"Antonio Inforzato ,&nbsp;Anthony J. Day","doi":"10.1016/j.matbio.2025.04.001","DOIUrl":"10.1016/j.matbio.2025.04.001","url":null,"abstract":"<div><div>Pentraxin-3 (PTX3) is a secreted protein with roles in the stabilisation of hyaluronan-rich extracellular matrices involved in reproductive biology and inflammatory processes, as well as additional functions in innate immunity and cancer. Our recent structural studies (Shah <em>et al.</em>, 2025; DOI:10.1016/j.matbio.2025.01.002), involving X-ray crystallography, cryo-electron microscopy (cryoEM) and AlphaFold modelling, have provided clues as to how PTX3 becomes assembled into an octamer from eight identical protomer subunits. Here it was proposed that four protomers initially form a tetramer, composed of a highly extended N-terminal region consisting of coiled-coil structures and C-terminal pentraxin domains, where two tetramers then immediately align and associate via an extensive network of salt bridges, allowing stabilisation of the octamer via the formation of disulphide bonds. However, a paper published around the same time provides an alternative perspective (Guo <em>et al</em>., 2025; DOI: 10.1016/j.ijbiomac.2024.139207). The authors propose, based on cryoEM analyses, that in addition to octamers, stable dimers, tetramers and hexamers of PTX3 can also assemble, where it is the dimers that provide the ‘building blocks’ for generation of the various oligomeric forms. In this commentary we suggest that the presence of dimers, tetramers and hexamers is likely an artefact of the construct used in recombinant expression, since the existence of these oligomers is not consistent with other studies on PTX3. We also provide a model to clarify how protomers become assembled into an octamer via sequential formation of a disulphide-linked tetramer, non-covalent association of two tetramers through aligned ionic interactions and the formation of disulphide bonds between the C-terminal pentraxin domains.</div></div>","PeriodicalId":49851,"journal":{"name":"Matrix Biology","volume":"138 ","pages":"Pages 22-26"},"PeriodicalIF":4.5,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143789372","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Toward a rational therapeutic for elastin related disease: Key considerations for elastin based regenerative medicine strategies
IF 4.5 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-03-28 DOI: 10.1016/j.matbio.2025.03.003
Meysam Ganjibakhsh , Yanina Tkachenko , Russell H. Knutsen , Beth A. Kozel
Elastin is a connective tissue protein, produced from the ELN gene, that provides elasticity and recoil to tissues that stretch, such as the large arteries of the body, lung parenchyma, skin, ligaments and elastic cartilages. It is produced as a soluble monomer, tropoelastin, that when cross-linked in the extracellular space generates a polymer that is extraordinarily stable, with a predicted half-life of >70 years. Although data suggest ongoing elastin transcription, it is rare to see new elastin deposited outside of its tight developmental window. Consequently, elastin-related disease comes about primarily in one of three scenarios: (1) inadequate elastin deposition, (2) production of poor-quality elastic fibers, or (3) increased destruction of previously deposited elastin. By understanding the pathways controlling elastin production and maintenance, we can design new therapeutics to thwart those abnormal processes. In this review, we will summarize the diseases arising from genetic and environmental alteration of elastin (Williams syndrome, supravalvar aortic stenosis, autosomal dominant cutis laxa, and ELN-related vascular and connective tissue dysfunction) and then describe the mechanisms controlling elastin production and maintenance that might be manipulated to generate novel therapeutics aimed at these conditions. We will end by summarizing existing therapeutic strategies targeting these disease mechanisms before outlining future approaches that may better solve the challenges associated with elastin based regenerative medicine.
弹性蛋白是一种结缔组织蛋白,由 ELN 基因产生,可为人体大动脉、肺实质、皮肤、韧带和弹性软骨等伸展组织提供弹性和反冲力。它以可溶性单体特罗波弹性蛋白(tropoelastin)的形式产生,在细胞外空间交联后生成的聚合物异常稳定,半衰期预计超过 70 年。尽管有数据表明弹性蛋白的转录仍在进行,但很少能看到新的弹性蛋白在其紧密的发育窗口外沉积。因此,与弹性蛋白相关的疾病主要有三种情况:1)弹性蛋白沉积不足;2)产生劣质弹性纤维;或3)先前沉积的弹性蛋白破坏加剧。通过了解控制弹性蛋白生成和维持的途径,我们可以设计出新的疗法来阻止这些异常过程。在这篇综述中,我们将总结因弹性蛋白的遗传和环境改变而导致的疾病(威廉姆斯综合征、主动脉瓣上狭窄、常染色体显性遗传性皮肤松弛症以及与ELN相关的血管和结缔组织功能障碍),然后描述控制弹性蛋白生成和维持的机制,这些机制可能会被用于产生针对这些疾病的新型疗法。最后,我们将总结针对这些疾病机制的现有治疗策略,然后概述未来可能更好地解决弹性蛋白再生医学相关挑战的方法。
{"title":"Toward a rational therapeutic for elastin related disease: Key considerations for elastin based regenerative medicine strategies","authors":"Meysam Ganjibakhsh ,&nbsp;Yanina Tkachenko ,&nbsp;Russell H. Knutsen ,&nbsp;Beth A. Kozel","doi":"10.1016/j.matbio.2025.03.003","DOIUrl":"10.1016/j.matbio.2025.03.003","url":null,"abstract":"<div><div>Elastin is a connective tissue protein, produced from the <em>ELN</em> gene, that provides elasticity and recoil to tissues that stretch, such as the large arteries of the body, lung parenchyma, skin, ligaments and elastic cartilages. It is produced as a soluble monomer, tropoelastin, that when cross-linked in the extracellular space generates a polymer that is extraordinarily stable, with a predicted half-life of &gt;70 years. Although data suggest ongoing elastin transcription, it is rare to see new elastin deposited outside of its tight developmental window. Consequently, elastin-related disease comes about primarily in one of three scenarios: (1) inadequate elastin deposition, (2) production of poor-quality elastic fibers, or (3) increased destruction of previously deposited elastin. By understanding the pathways controlling elastin production and maintenance, we can design new therapeutics to thwart those abnormal processes. In this review, we will summarize the diseases arising from genetic and environmental alteration of elastin (Williams syndrome, supravalvar aortic stenosis, autosomal dominant cutis laxa, and ELN-related vascular and connective tissue dysfunction) and then describe the mechanisms controlling elastin production and maintenance that might be manipulated to generate novel therapeutics aimed at these conditions. We will end by summarizing existing therapeutic strategies targeting these disease mechanisms before outlining future approaches that may better solve the challenges associated with elastin based regenerative medicine.</div></div>","PeriodicalId":49851,"journal":{"name":"Matrix Biology","volume":"138 ","pages":"Pages 8-21"},"PeriodicalIF":4.5,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143755559","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Structural insights on perlecan and Schwartz–Jampel syndrome 关于perlecan和Schwartz-Jampel综合征的结构见解。
IF 4.5 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-03-19 DOI: 10.1016/j.matbio.2025.03.002
Anil A. Sohail , M. Kristian Koski , Lloyd W. Ruddock
Perlecan is an essential multi-domain, disulfide bond rich basement membrane protein. Mutations in perlecan cause Schwartz-Jampel syndrome and dyssegmental dysplasia. While there has been a large body of experimental work reported on perlecan, there is only minimal structural information available to date. There is no prior structural data for region 3 of perlecan in which some Schwartz-Jampel syndrome causing point mutations have been reported. Here, we produce constructs of the disulfide rich region 3 of perlecan along with five mutations previously reported to cause Schwatz-Jampel syndrome. Four of the mutations resulted in decreased yields and thermal stability compared to the wild-type protein. In contrast, the P1019L mutation was produced in good yields and showed higher thermal stability than the wild-type protein. The crystal structures for both the wild-type and P1019L mutation were solved. As expected, both showed laminin IV-like and laminin-type EGF-like domains, with the P1019L mutation resulting in only a minor conformational change in a loop region and no significant changes in regular secondary or tertiary structure.
{"title":"Structural insights on perlecan and Schwartz–Jampel syndrome","authors":"Anil A. Sohail ,&nbsp;M. Kristian Koski ,&nbsp;Lloyd W. Ruddock","doi":"10.1016/j.matbio.2025.03.002","DOIUrl":"10.1016/j.matbio.2025.03.002","url":null,"abstract":"<div><div>Perlecan is an essential multi-domain, disulfide bond rich basement membrane protein. Mutations in perlecan cause Schwartz-Jampel syndrome and dyssegmental dysplasia. While there has been a large body of experimental work reported on perlecan, there is only minimal structural information available to date. There is no prior structural data for region 3 of perlecan in which some Schwartz-Jampel syndrome causing point mutations have been reported. Here, we produce constructs of the disulfide rich region 3 of perlecan along with five mutations previously reported to cause Schwatz-Jampel syndrome. Four of the mutations resulted in decreased yields and thermal stability compared to the wild-type protein. In contrast, the P1019L mutation was produced in good yields and showed higher thermal stability than the wild-type protein. The crystal structures for both the wild-type and P1019L mutation were solved. As expected, both showed laminin IV-like and laminin-type EGF-like domains, with the P1019L mutation resulting in only a minor conformational change in a loop region and no significant changes in regular secondary or tertiary structure.</div></div>","PeriodicalId":49851,"journal":{"name":"Matrix Biology","volume":"138 ","pages":"Pages 1-7"},"PeriodicalIF":4.5,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143673661","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Circulating collagen type I fragments as specific biomarkers of cardiovascular outcome risk: Where are the opportunities?
IF 4.5 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-03-02 DOI: 10.1016/j.matbio.2025.03.001
Emily M. Martin , Joan Chang , Arantxa González , Federica Genovese
Collagen type I (COL1) is the most abundant protein in the human body and is a main component in the extracellular matrix. The COL1 structure vastly influences normal tissue homeostasis, and changes in the matrix drive progression in multiple diseases. Cardiovascular diseases (CVD) are the leading cause of mortality and morbidity in many Western countries; alterations in the extracellular matrix turnover processes, including COL1, are known to influence the pathophysiological processes leading to CVD outcome. Peptides reflecting COL1 formation and degradation have been established and explored for over two decades in CVD. This review aims to combine and assess the evidence for using COL1-derived circulating peptides as biomarkers in CVD. Secondly, the review identifies existing pitfalls, and evaluates future opportunities for improving the technical characteristics and performance of the biomarkers for implementation in the clinical setting.
{"title":"Circulating collagen type I fragments as specific biomarkers of cardiovascular outcome risk: Where are the opportunities?","authors":"Emily M. Martin ,&nbsp;Joan Chang ,&nbsp;Arantxa González ,&nbsp;Federica Genovese","doi":"10.1016/j.matbio.2025.03.001","DOIUrl":"10.1016/j.matbio.2025.03.001","url":null,"abstract":"<div><div>Collagen type I (COL1) is the most abundant protein in the human body and is a main component in the extracellular matrix. The COL1 structure vastly influences normal tissue homeostasis, and changes in the matrix drive progression in multiple diseases. Cardiovascular diseases (CVD) are the leading cause of mortality and morbidity in many Western countries; alterations in the extracellular matrix turnover processes, including COL1, are known to influence the pathophysiological processes leading to CVD outcome. Peptides reflecting COL1 formation and degradation have been established and explored for over two decades in CVD. This review aims to combine and assess the evidence for using COL1-derived circulating peptides as biomarkers in CVD. Secondly, the review identifies existing pitfalls, and evaluates future opportunities for improving the technical characteristics and performance of the biomarkers for implementation in the clinical setting.</div></div>","PeriodicalId":49851,"journal":{"name":"Matrix Biology","volume":"137 ","pages":"Pages 19-32"},"PeriodicalIF":4.5,"publicationDate":"2025-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143558463","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Laminins and the blood-brain barrier
IF 4.5 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-03-01 DOI: 10.1016/j.matbio.2025.02.005
Ava Nasrollahi, Yao Yao
The blood-brain barrier (BBB) is a dynamic structure that maintains brain homeostasis. BBB breakdown is a key pathological hallmark of almost all neurological diseases. Although the regulation of BBB integrity by different cells has been extensively studied, the function of its non-cellular component—the basal lamina in BBB regulation remains largely unknown. Laminin, a trimeric protein with multiple isoforms, is one of the most important constituents of the basal lamina. In the CNS, different cells synthesize distinct laminin isoforms, which differentially regulate BBB integrity in both physiological and pathological conditions. A thorough understanding of laminin expression and function in BBB integrity could lead to the identification of novel therapeutic targets and potentially result in effective treatments for neurological disorders involving BBB disruption. Here in this review, we first briefly introduce the BBB and basal lamina with a focus on laminin. Next, we elucidate laminin expression and its function in BBB maintenance/repair in a cell-specific manner. Potential functional compensation among laminin isoforms is also discussed. Last, current challenges in the field and future directions are summarized. Our goal is to provide a synthetic review to encourage novel ideas and stimulate new research in the field.
{"title":"Laminins and the blood-brain barrier","authors":"Ava Nasrollahi,&nbsp;Yao Yao","doi":"10.1016/j.matbio.2025.02.005","DOIUrl":"10.1016/j.matbio.2025.02.005","url":null,"abstract":"<div><div>The blood-brain barrier (BBB) is a dynamic structure that maintains brain homeostasis. BBB breakdown is a key pathological hallmark of almost all neurological diseases. Although the regulation of BBB integrity by different cells has been extensively studied, the function of its non-cellular component—the basal lamina in BBB regulation remains largely unknown. Laminin, a trimeric protein with multiple isoforms, is one of the most important constituents of the basal lamina. In the CNS, different cells synthesize distinct laminin isoforms, which differentially regulate BBB integrity in both physiological and pathological conditions. A thorough understanding of laminin expression and function in BBB integrity could lead to the identification of novel therapeutic targets and potentially result in effective treatments for neurological disorders involving BBB disruption. Here in this review, we first briefly introduce the BBB and basal lamina with a focus on laminin. Next, we elucidate laminin expression and its function in BBB maintenance/repair in a cell-specific manner. Potential functional compensation among laminin isoforms is also discussed. Last, current challenges in the field and future directions are summarized. Our goal is to provide a synthetic review to encourage novel ideas and stimulate new research in the field.</div></div>","PeriodicalId":49851,"journal":{"name":"Matrix Biology","volume":"137 ","pages":"Pages 33-41"},"PeriodicalIF":4.5,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143544188","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mysteries of the collagen triple helix
IF 4.5 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-02-14 DOI: 10.1016/j.matbio.2025.02.003
Hans Peter Bächinger , Sergei P. Boudko
The collagen triple helix is one of the structurally simplest protein motifs that still holds a lot of secrets. The Gly-X-Y repeat is a business card of collagens, where Gly is required for the tight packing of three helices into a superhelix and X and Y residues are important for stabilizing the triple helix and communicating with the world. On its way to a functional molecule, collagen sequences undergo unique post-translational modifications inside and outside of the cell. Moreover, folding and secretion of collagens require specific proteins and mechanisms. Cracking the collagen triple helix codes opens up opportunities for curing associated diseases and developing new biomaterials. Here, we summarized my journey through some mysteries of the collagen triple helix and point out key unaddressed questions and problems for other researchers to pursue.
{"title":"Mysteries of the collagen triple helix","authors":"Hans Peter Bächinger ,&nbsp;Sergei P. Boudko","doi":"10.1016/j.matbio.2025.02.003","DOIUrl":"10.1016/j.matbio.2025.02.003","url":null,"abstract":"<div><div>The collagen triple helix is one of the structurally simplest protein motifs that still holds a lot of secrets. The Gly-X-Y repeat is a business card of collagens, where Gly is required for the tight packing of three helices into a superhelix and X and Y residues are important for stabilizing the triple helix and communicating with the world. On its way to a functional molecule, collagen sequences undergo unique post-translational modifications inside and outside of the cell. Moreover, folding and secretion of collagens require specific proteins and mechanisms. Cracking the collagen triple helix codes opens up opportunities for curing associated diseases and developing new biomaterials. Here, we summarized my journey through some mysteries of the collagen triple helix and point out key unaddressed questions and problems for other researchers to pursue.</div></div>","PeriodicalId":49851,"journal":{"name":"Matrix Biology","volume":"137 ","pages":"Pages 12-18"},"PeriodicalIF":4.5,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143433939","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Inhibition of the MRTF-A/SRF signaling axis alleviates vocal fold scarring
IF 4.5 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-02-14 DOI: 10.1016/j.matbio.2025.02.004
Ryan M. Friedman , Huy D. Truong , Matthew R. Aronson , Elizabeth A. Brown , Marco Angelozzi , Jeffrey F. Chen , Karen B. Zur , Véronique Lefebvre , Riccardo Gottardi
Vocal fold scarring, the most common cause of poor voice after airway injury, involves the transition of vocal fold fibroblasts to contractile myofibroblasts. Vocal fold myofibroblasts can be characterized by significant extracellular matrix (ECM) secretion and stress fiber formation. Biochemical signals, such as transforming growth factor (TGF)-β1, and biophysical cues, such as matrix stiffening, have been shown to induce the fibroblast-to-myofibroblast transition. To identify key intracellular pathways that may mediate myofibroblast activation, we performed bulk RNA sequencing of human vocal fold fibroblasts treated with or without TGF-β1 and found that genes downstream of myocardin related transcription factor A (MRTF-A) and serum response factor (SRF) were upregulated in TGFβ1-induced myofibroblasts. We then show that both TGF-β1 and ECM stiffening induce MRTF-A and SRF nuclear translocation during vocal fold myofibroblast activation. Inhibition of MRTF-A via CCG-257,081 reduced pro-fibrotic gene expression, the percentage of α-smooth muscle actin (α-SMA)-positive fibroblasts, and cell contractility in vitro. In a murine model of vocal fold scarring, MRTF-A inhibition reduced vocal fold scarring severity, evidenced by reduced epithelial thickening, decreased glycosaminoglycan content, and collagen deposition, and decreased expression of ACTA2. Our study suggests that the MRTF-A/SRF pathway regulates vocal fold myofibroblast activation, and that inhibition of MRTF-A has a protective effect against vocal fold scarring in mice.
{"title":"Inhibition of the MRTF-A/SRF signaling axis alleviates vocal fold scarring","authors":"Ryan M. Friedman ,&nbsp;Huy D. Truong ,&nbsp;Matthew R. Aronson ,&nbsp;Elizabeth A. Brown ,&nbsp;Marco Angelozzi ,&nbsp;Jeffrey F. Chen ,&nbsp;Karen B. Zur ,&nbsp;Véronique Lefebvre ,&nbsp;Riccardo Gottardi","doi":"10.1016/j.matbio.2025.02.004","DOIUrl":"10.1016/j.matbio.2025.02.004","url":null,"abstract":"<div><div>Vocal fold scarring, the most common cause of poor voice after airway injury, involves the transition of vocal fold fibroblasts to contractile myofibroblasts. Vocal fold myofibroblasts can be characterized by significant extracellular matrix (ECM) secretion and stress fiber formation. Biochemical signals, such as transforming growth factor (TGF)-β1, and biophysical cues, such as matrix stiffening, have been shown to induce the fibroblast-to-myofibroblast transition. To identify key intracellular pathways that may mediate myofibroblast activation, we performed bulk RNA sequencing of human vocal fold fibroblasts treated with or without TGF-β1 and found that genes downstream of myocardin related transcription factor A (MRTF-A) and serum response factor (SRF) were upregulated in TGFβ1-induced myofibroblasts. We then show that both TGF-β1 and ECM stiffening induce MRTF-A and SRF nuclear translocation during vocal fold myofibroblast activation. Inhibition of MRTF-A via CCG-257,081 reduced pro-fibrotic gene expression, the percentage of α-smooth muscle actin (α-SMA)-positive fibroblasts, and cell contractility <em>in vitro</em>. In a murine model of vocal fold scarring, MRTF-A inhibition reduced vocal fold scarring severity, evidenced by reduced epithelial thickening, decreased glycosaminoglycan content, and collagen deposition, and decreased expression of <em>ACTA2</em>. Our study suggests that the MRTF-A/SRF pathway regulates vocal fold myofibroblast activation, and that inhibition of MRTF-A has a protective effect against vocal fold scarring in mice.</div></div>","PeriodicalId":49851,"journal":{"name":"Matrix Biology","volume":"137 ","pages":"Pages 1-11"},"PeriodicalIF":4.5,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143433802","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Role of syndecan-4 in angiogenesis and vasculogenic mimicry in triple negative breast cancer cells
IF 4.5 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-02-10 DOI: 10.1016/j.matbio.2025.02.002
Jessica Oyie Sousa Onyeisi , Heba M. El-Shorafa , Burkhard Greve , Martin Götte
Syndecan-4 (SDC4), a heparan sulfate proteoglycan, is aberrantly expressed in breast cancer and plays a significant role in tumor progression by influencing cell proliferation and promoting invasive growth. This study aimed to characterize its role in the tumor microenvironment by analyzing the contribution of SDC4 to vasculogenic mimicry (VM) and angiogenesis in human breast cancer cells. We silenced SDC4 in the triple-negative breast cancer (TNBC) cell lines MDA-MB-231, MDA-MB-468, and SUM-149 and analyzed its functions in vitro. SDC4 knockdown inhibited the VM of MDA-MB-231 cells as analyzed by fluorescence microscopy. Moreover, RT-qPCR revealed decreased expression of KLF4, EGR1, and HPSE, factors involved in VM, proangiogenic and pro-invasive processes in all TNBC cell lines. Western blotting revealed a partially cell-line-dependent regulation of these proteins by SDC4. At the functional level, SDC4 knockdown also impaired angiogenesis, decreasing the number of nodes and meshes in a 3D co-culture model comprising endothelial cells and TNBC cells. Using a Proteome Profile Human Angiogenesis Array, we observed that SDC4 knockdown decreased the secretion of VEGF and IGFBP-1, while it increased the secretion of IL-8, uPA, and amphiregulin in the conditioned media of the MDA-MB-231 and MDA-MB-468 co-cultures. Independent RT-qPCR analyses of gene expression were consistent with those of the angiogenesis array. Overall, these findings highlighted the crucial role of SDC4 in regulating both vasculogenic mimicry and angiogenesis in TNBC cells. The data indicate that SDC4 acts as a crucial regulatory molecule and represents a promising target for therapeutic strategies in breast cancer.
{"title":"Role of syndecan-4 in angiogenesis and vasculogenic mimicry in triple negative breast cancer cells","authors":"Jessica Oyie Sousa Onyeisi ,&nbsp;Heba M. El-Shorafa ,&nbsp;Burkhard Greve ,&nbsp;Martin Götte","doi":"10.1016/j.matbio.2025.02.002","DOIUrl":"10.1016/j.matbio.2025.02.002","url":null,"abstract":"<div><div>Syndecan-4 (SDC4), a heparan sulfate proteoglycan, is aberrantly expressed in breast cancer and plays a significant role in tumor progression by influencing cell proliferation and promoting invasive growth. This study aimed to characterize its role in the tumor microenvironment by analyzing the contribution of SDC4 to vasculogenic mimicry (VM) and angiogenesis in human breast cancer cells. We silenced SDC4 in the triple-negative breast cancer (TNBC) cell lines MDA-MB-231, MDA-MB-468, and SUM-149 and analyzed its functions in vitro. SDC4 knockdown inhibited the VM of MDA-MB-231 cells as analyzed by fluorescence microscopy. Moreover, RT-qPCR revealed decreased expression of KLF4, EGR1, and HPSE, factors involved in VM, proangiogenic and pro-invasive processes in all TNBC cell lines. Western blotting revealed a partially cell-line-dependent regulation of these proteins by SDC4. At the functional level, SDC4 knockdown also impaired angiogenesis, decreasing the number of nodes and meshes in a 3D co-culture model comprising endothelial cells and TNBC cells. Using a Proteome Profile Human Angiogenesis Array, we observed that SDC4 knockdown decreased the secretion of VEGF and IGFBP-1, while it increased the secretion of IL-8, uPA, and amphiregulin in the conditioned media of the MDA-MB-231 and MDA-MB-468 co-cultures. Independent RT-qPCR analyses of gene expression were consistent with those of the angiogenesis array. Overall, these findings highlighted the crucial role of SDC4 in regulating both vasculogenic mimicry and angiogenesis in TNBC cells. The data indicate that SDC4 acts as a crucial regulatory molecule and represents a promising target for therapeutic strategies in breast cancer.</div></div>","PeriodicalId":49851,"journal":{"name":"Matrix Biology","volume":"136 ","pages":"Pages 127-133"},"PeriodicalIF":4.5,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143411302","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dystrophic epidermolysis bullosa - From biochemistry to interventions 萎缩性表皮松解症--从生物化学到干预措施
IF 4.5 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-02-06 DOI: 10.1016/j.matbio.2025.02.001
Alexander Nyström
The skin, as a barrier organ meeting constant mechanical challenges, is equipped with multiple adhesive structures that collectively support resilient, yet flexible attachment of its epithelium –the epidermis to its mesenchyme – the dermis. One such structure is the collagen VII-composed anchoring fibril, which provides firm anchorage of the epidermal basement membrane to the underlying interstitial extracellular matrix. Blistering and wider tissue fragility in the genetic disease dystrophic epidermolysis bullosa (DEB) caused by collagen VII deficiency illustrate the essential function of collagen VII in supporting skin integrity. DEB is also a progressive inflammatory fibrotic disease with multi-organ involvement, indicating that collagen VII has broader functions than simply providing epithelial anchorage. This review explores the reciprocal relationship between collagen VII biology and DEB pathophysiology. A deeper understanding of collagen VII biology – spanning its synthesis, assembly into suprastructures, and regulatory roles – enhances our understanding of DEB. Conversely, detailed insights into DEB through analysis of disease progression or therapeutic interventions offer valuable information on the broader tissue and organismal roles of collagen VII in maintaining homeostasis. This review focuses on such knowledge exchange in advancing our understanding of collagen VII, the extracellular matrix in general, and inspiring potential strategies for treatment of DEB. Importantly, in a broader sense, the discussed themes are applicable to other conditions driven by compromised extracellular matrix instruction and integrity, leading to progressive damage and inflammation.
{"title":"Dystrophic epidermolysis bullosa - From biochemistry to interventions","authors":"Alexander Nyström","doi":"10.1016/j.matbio.2025.02.001","DOIUrl":"10.1016/j.matbio.2025.02.001","url":null,"abstract":"<div><div>The skin, as a barrier organ meeting constant mechanical challenges, is equipped with multiple adhesive structures that collectively support resilient, yet flexible attachment of its epithelium –the epidermis to its mesenchyme – the dermis. One such structure is the collagen VII-composed anchoring fibril, which provides firm anchorage of the epidermal basement membrane to the underlying interstitial extracellular matrix. Blistering and wider tissue fragility in the genetic disease dystrophic epidermolysis bullosa (DEB) caused by collagen VII deficiency illustrate the essential function of collagen VII in supporting skin integrity. DEB is also a progressive inflammatory fibrotic disease with multi-organ involvement, indicating that collagen VII has broader functions than simply providing epithelial anchorage. This review explores the reciprocal relationship between collagen VII biology and DEB pathophysiology. A deeper understanding of collagen VII biology – spanning its synthesis, assembly into suprastructures, and regulatory roles – enhances our understanding of DEB. Conversely, detailed insights into DEB through analysis of disease progression or therapeutic interventions offer valuable information on the broader tissue and organismal roles of collagen VII in maintaining homeostasis. This review focuses on such knowledge exchange in advancing our understanding of collagen VII, the extracellular matrix in general, and inspiring potential strategies for treatment of DEB. Importantly, in a broader sense, the discussed themes are applicable to other conditions driven by compromised extracellular matrix instruction and integrity, leading to progressive damage and inflammation.</div></div>","PeriodicalId":49851,"journal":{"name":"Matrix Biology","volume":"136 ","pages":"Pages 111-126"},"PeriodicalIF":4.5,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143369736","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Matrix Biology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1