{"title":"Microfluidics-based patient-derived disease detection tool for deep learning-assisted precision medicine","authors":"Haojun Hua, Yunlan Zhou, Wei Li, Jing Zhang, Yanlin Deng, Bee Luan Khoo","doi":"10.1063/5.0172146","DOIUrl":null,"url":null,"abstract":"Cancer spatial and temporal heterogeneity fuels resistance to therapies. To realize the routine assessment of cancer prognosis and treatment, we demonstrate the development of an Intelligent Disease Detection Tool (IDDT), a microfluidic-based tumor model integrated with deep learning-assisted algorithmic analysis. IDDT was clinically validated with liquid blood biopsy samples (n = 71) from patients with various types of cancers (e.g., breast, gastric, and lung cancer) and healthy donors, requiring low sample volume (∼200 μl) and a high-throughput 3D tumor culturing system (∼300 tumor clusters). To support automated algorithmic analysis, intelligent decision-making, and precise segmentation, we designed and developed an integrative deep neural network, which includes Mask Region-Based Convolutional Neural Network (Mask R-CNN), vision transformer, and Segment Anything Model (SAM). Our approach significantly reduces the manual labeling time by up to 90% with a high mean Intersection Over Union (mIoU) of 0.902 and immediate results (<2 s per image) for clinical cohort classification. The IDDT can accurately stratify healthy donors (n = 12) and cancer patients (n = 55) within their respective treatment cycle and cancer stage, resulting in high precision (∼99.3%) and high sensitivity (∼98%). We envision that our patient-centric IDDT provides an intelligent, label-free, and cost-effective approach to help clinicians make precise medical decisions and tailor treatment strategies for each patient.","PeriodicalId":8855,"journal":{"name":"Biomicrofluidics","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomicrofluidics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0172146","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Cancer spatial and temporal heterogeneity fuels resistance to therapies. To realize the routine assessment of cancer prognosis and treatment, we demonstrate the development of an Intelligent Disease Detection Tool (IDDT), a microfluidic-based tumor model integrated with deep learning-assisted algorithmic analysis. IDDT was clinically validated with liquid blood biopsy samples (n = 71) from patients with various types of cancers (e.g., breast, gastric, and lung cancer) and healthy donors, requiring low sample volume (∼200 μl) and a high-throughput 3D tumor culturing system (∼300 tumor clusters). To support automated algorithmic analysis, intelligent decision-making, and precise segmentation, we designed and developed an integrative deep neural network, which includes Mask Region-Based Convolutional Neural Network (Mask R-CNN), vision transformer, and Segment Anything Model (SAM). Our approach significantly reduces the manual labeling time by up to 90% with a high mean Intersection Over Union (mIoU) of 0.902 and immediate results (<2 s per image) for clinical cohort classification. The IDDT can accurately stratify healthy donors (n = 12) and cancer patients (n = 55) within their respective treatment cycle and cancer stage, resulting in high precision (∼99.3%) and high sensitivity (∼98%). We envision that our patient-centric IDDT provides an intelligent, label-free, and cost-effective approach to help clinicians make precise medical decisions and tailor treatment strategies for each patient.
期刊介绍:
Biomicrofluidics (BMF) is an online-only journal published by AIP Publishing to rapidly disseminate research in fundamental physicochemical mechanisms associated with microfluidic and nanofluidic phenomena. BMF also publishes research in unique microfluidic and nanofluidic techniques for diagnostic, medical, biological, pharmaceutical, environmental, and chemical applications.
BMF offers quick publication, multimedia capability, and worldwide circulation among academic, national, and industrial laboratories. With a primary focus on high-quality original research articles, BMF also organizes special sections that help explain and define specific challenges unique to the interdisciplinary field of biomicrofluidics.
Microfluidic and nanofluidic actuation (electrokinetics, acoustofluidics, optofluidics, capillary)
Liquid Biopsy (microRNA profiling, circulating tumor cell isolation, exosome isolation, circulating tumor DNA quantification)
Cell sorting, manipulation, and transfection (di/electrophoresis, magnetic beads, optical traps, electroporation)
Molecular Separation and Concentration (isotachophoresis, concentration polarization, di/electrophoresis, magnetic beads, nanoparticles)
Cell culture and analysis(single cell assays, stimuli response, stem cell transfection)
Genomic and proteomic analysis (rapid gene sequencing, DNA/protein/carbohydrate arrays)
Biosensors (immuno-assay, nucleic acid fluorescent assay, colorimetric assay, enzyme amplification, plasmonic and Raman nano-reporter, molecular beacon, FRET, aptamer, nanopore, optical fibers)
Biophysical transport and characterization (DNA, single protein, ion channel and membrane dynamics, cell motility and communication mechanisms, electrophysiology, patch clamping). Etc...