首页 > 最新文献

Biomicrofluidics最新文献

英文 中文
Lab-on-a-chip models of cardiac inflammation. 心脏炎症的芯片实验室模型
IF 2.6 4区 工程技术 Q2 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-10-29 eCollection Date: 2024-09-01 DOI: 10.1063/5.0231735
Anna Maria Popovic, Matthew Ho Cheong Lei, Amid Shakeri, Ramak Khosravi, Milica Radisic

Cardiovascular diseases are the leading cause of morbidity and mortality worldwide with numerous inflammatory cell etiologies associated with impaired cardiac function and heart failure. Inflammatory cardiomyopathy, also known as myocarditis, is an acquired cardiomyopathy characterized by inflammatory cell infiltration into the myocardium with a high risk of progression to deteriorated cardiac function. Recently, amidst the ongoing COVID-19 pandemic, the emergence of acute myocarditis as a complication of SARS-CoV-2 has garnered significant concern. Given its mechanisms remain elusive in conjunction with the recent withdrawal of previously FDA-approved antiviral therapeutics and prophylactics due to unexpected cardiotoxicity, there is a pressing need for human-mimetic platforms to investigate disease pathogenesis, model dysfunctional features, and support pre-clinical drug screening. Traditional in vitro models for studying cardiovascular diseases have inherent limitations in recapitulating the complexity of the in vivo microenvironment. Heart-on-a-chip technologies, combining microfabrication, microfluidics, and tissue engineering techniques, have emerged as a promising approach for modeling inflammatory cardiac diseases like myocarditis. This review outlines the established and emerging conditions of inflamed myocardium, identifying key features essential for recapitulating inflamed myocardial structure and functions in heart-on-a-chip models, highlighting recent advancements, including the integration of anisotropic contractile geometry, cardiomyocyte maturity, electromechanical functions, vascularization, circulating immunity, and patient/sex specificity. Finally, we discuss the limitations and future perspectives necessary for the clinical translation of these advanced technologies.

心血管疾病是全球发病率和死亡率的主要原因,许多炎症细胞病因都与心功能受损和心力衰竭有关。炎症性心肌病又称心肌炎,是一种获得性心肌病,其特点是炎性细胞浸润心肌,极易导致心功能恶化。最近,在 COVID-19 大流行期间,急性心肌炎作为 SARS-CoV-2 的一种并发症引起了人们的极大关注。鉴于其发病机制仍然难以捉摸,再加上最近美国食品及药物管理局批准的抗病毒疗法和预防药物因意外的心脏毒性而被撤消,因此迫切需要仿人类平台来研究疾病的发病机制、模拟功能障碍特征并支持临床前药物筛选。研究心血管疾病的传统体外模型在再现体内微环境的复杂性方面存在固有的局限性。芯片心脏技术结合了微加工、微流控和组织工程技术,已成为模拟心肌炎等炎症性心脏疾病的一种很有前景的方法。本综述概述了炎症心肌的既有条件和新兴条件,确定了在片上心脏模型中再现炎症心肌结构和功能的关键特征,重点介绍了最近的进展,包括各向异性收缩几何、心肌细胞成熟度、机电功能、血管化、循环免疫和患者/性别特异性的整合。最后,我们讨论了这些先进技术临床转化所需的局限性和未来展望。
{"title":"Lab-on-a-chip models of cardiac inflammation.","authors":"Anna Maria Popovic, Matthew Ho Cheong Lei, Amid Shakeri, Ramak Khosravi, Milica Radisic","doi":"10.1063/5.0231735","DOIUrl":"10.1063/5.0231735","url":null,"abstract":"<p><p>Cardiovascular diseases are the leading cause of morbidity and mortality worldwide with numerous inflammatory cell etiologies associated with impaired cardiac function and heart failure. Inflammatory cardiomyopathy, also known as myocarditis, is an acquired cardiomyopathy characterized by inflammatory cell infiltration into the myocardium with a high risk of progression to deteriorated cardiac function. Recently, amidst the ongoing COVID-19 pandemic, the emergence of acute myocarditis as a complication of SARS-CoV-2 has garnered significant concern. Given its mechanisms remain elusive in conjunction with the recent withdrawal of previously FDA-approved antiviral therapeutics and prophylactics due to unexpected cardiotoxicity, there is a pressing need for human-mimetic platforms to investigate disease pathogenesis, model dysfunctional features, and support pre-clinical drug screening. Traditional <i>in vitro</i> models for studying cardiovascular diseases have inherent limitations in recapitulating the complexity of the <i>in vivo</i> microenvironment. Heart-on-a-chip technologies, combining microfabrication, microfluidics, and tissue engineering techniques, have emerged as a promising approach for modeling inflammatory cardiac diseases like myocarditis. This review outlines the established and emerging conditions of inflamed myocardium, identifying key features essential for recapitulating inflamed myocardial structure and functions in heart-on-a-chip models, highlighting recent advancements, including the integration of anisotropic contractile geometry, cardiomyocyte maturity, electromechanical functions, vascularization, circulating immunity, and patient/sex specificity. Finally, we discuss the limitations and future perspectives necessary for the clinical translation of these advanced technologies.</p>","PeriodicalId":8855,"journal":{"name":"Biomicrofluidics","volume":"18 5","pages":"051507"},"PeriodicalIF":2.6,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11524635/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142557056","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Non-invasive measurement of wall shear stress in microfluidic chip for osteoblast cell culture using improved depth estimation of defocus particle tracking method. 利用改进的离焦粒子跟踪深度估算法,无创测量用于成骨细胞培养的微流控芯片中的壁剪应力。
IF 2.6 4区 工程技术 Q2 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-10-24 eCollection Date: 2024-09-01 DOI: 10.1063/5.0226294
Hein Htet Aung, Phattarin Pothipan, Jirasin Aswakool, Siraphob Santironnarong, Rungrueang Phatthanakun, Visarute Pinrod, Thanakorn Jiemsakul, Wares Chancharoen, Aekkacha Moonwiriyakit

The development of a non-invasive method for measuring the internal fluid behavior and dynamics of microchannels in microfluidics poses critical challenges to biological research, such as understanding the impact of wall shear stress (WSS) in the growth of a bone-forming osteoblast. This study used the General Defocus Particle Tracking (GDPT) technique to develop a non-invasive method for quantifying the fluid velocity profile and calculated the WSS within a microfluidic chip. The GDPT estimates particle motion in a three-dimensional space by analyzing two-dimensional images and video captured using a single camera. However, without a lens to introduce aberration, GDPT is prone to error in estimating the displacement direction for out-of-focus particles, and without knowing the exact refractive indices, the scaling from estimated values to physical units is inaccurate. The proposed approach addresses both challenges by using theoretical knowledge on laminar flow and integrating results obtained from multiple analyses. The proposed approach was validated using computational fluid dynamics (CFD) simulations and experimental video of a microfluidic chip that can generate different WSS levels under steady-state flow conditions. By comparing the CFD and GDPT velocity profiles, it was found that the Mean Pearson Correlation Coefficient is 0.77 (max = 0.90) and the Mean Intraclass Correlation Coefficient is 0.66 (max = 0.82). The densitometry analysis of osteoblast cells cultured on the designed microfluidic chip for four days revealed that the cell proliferation rate correlates positively with the measured WSS values. The proposed analysis can be applied to quantify the laminar flow in microfluidic chip experiments without specialized equipment.

开发一种非侵入式方法来测量微流控芯片中微通道的内部流体行为和动力学对生物研究提出了严峻的挑战,例如了解壁剪应力(WSS)对成骨细胞生长的影响。本研究利用一般离焦粒子跟踪(GDPT)技术开发了一种非侵入式方法,用于量化流体速度曲线并计算微流控芯片内的 WSS。GDPT 通过分析使用单个摄像头拍摄的二维图像和视频来估算粒子在三维空间中的运动。然而,由于没有镜头引入像差,GDPT 在估计离焦粒子的位移方向时容易出错,而且由于不知道确切的折射率,从估计值到物理单位的缩放也不准确。所提出的方法利用层流的理论知识,并整合了从多种分析中获得的结果,从而解决了这两个难题。我们利用计算流体动力学(CFD)模拟和微流控芯片的实验视频对所提出的方法进行了验证,该芯片可在稳态流动条件下产生不同的 WSS 水平。通过比较 CFD 和 GDPT 的速度曲线,发现平均皮尔逊相关系数为 0.77(最大值 = 0.90),平均类内相关系数为 0.66(最大值 = 0.82)。对在设计的微流控芯片上培养四天的成骨细胞进行密度测量分析后发现,细胞增殖率与测得的 WSS 值呈正相关。建议的分析方法可用于量化微流控芯片实验中的层流,而无需专门设备。
{"title":"Non-invasive measurement of wall shear stress in microfluidic chip for osteoblast cell culture using improved depth estimation of defocus particle tracking method.","authors":"Hein Htet Aung, Phattarin Pothipan, Jirasin Aswakool, Siraphob Santironnarong, Rungrueang Phatthanakun, Visarute Pinrod, Thanakorn Jiemsakul, Wares Chancharoen, Aekkacha Moonwiriyakit","doi":"10.1063/5.0226294","DOIUrl":"10.1063/5.0226294","url":null,"abstract":"<p><p>The development of a non-invasive method for measuring the internal fluid behavior and dynamics of microchannels in microfluidics poses critical challenges to biological research, such as understanding the impact of wall shear stress (WSS) in the growth of a bone-forming osteoblast. This study used the General Defocus Particle Tracking (GDPT) technique to develop a non-invasive method for quantifying the fluid velocity profile and calculated the WSS within a microfluidic chip. The GDPT estimates particle motion in a three-dimensional space by analyzing two-dimensional images and video captured using a single camera. However, without a lens to introduce aberration, GDPT is prone to error in estimating the displacement direction for out-of-focus particles, and without knowing the exact refractive indices, the scaling from estimated values to physical units is inaccurate. The proposed approach addresses both challenges by using theoretical knowledge on laminar flow and integrating results obtained from multiple analyses. The proposed approach was validated using computational fluid dynamics (CFD) simulations and experimental video of a microfluidic chip that can generate different WSS levels under steady-state flow conditions. By comparing the CFD and GDPT velocity profiles, it was found that the Mean Pearson Correlation Coefficient is 0.77 (max = 0.90) and the Mean Intraclass Correlation Coefficient is 0.66 (max = 0.82). The densitometry analysis of osteoblast cells cultured on the designed microfluidic chip for four days revealed that the cell proliferation rate correlates positively with the measured WSS values. The proposed analysis can be applied to quantify the laminar flow in microfluidic chip experiments without specialized equipment.</p>","PeriodicalId":8855,"journal":{"name":"Biomicrofluidics","volume":"18 5","pages":"054114"},"PeriodicalIF":2.6,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11510738/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142493971","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In situ 3D polymerization (IS-3DP): Implementing an aqueous two-phase system for the formation of 3D objects inside a microfluidic channel. 原位三维聚合(IS-3DP):采用水性两相系统在微流体通道内形成三维物体。
IF 2.6 4区 工程技术 Q2 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-10-24 eCollection Date: 2024-09-01 DOI: 10.1063/5.0226620
Guillermo Ramirez-Alvarado, Gabriel Garibaldi, Chiraz Toujani, Gongchen Sun

Rapid prototyping and fabrication of microstructure have been revolutionized by 3D printing, especially stereolithography (SLA) based techniques due to the superior spatial resolution they offer. However, SLA-type 3D printing faces intrinsic challenges in multi-material integration and adaptive Z-layer slicing due to the use of a vat and a mechanically controlled Z-layer generation. In this paper, we present the conceptualization of a novel paradigm which uses dynamic and multi-phase laminar flow in a microfluidic channel to achieve fabrication of 3D objects. Our strategy, termed "in situ 3D polymerization," combines in situ polymerization and co-flow aqueous two-phase systems and achieves slicing, polymerization, and layer-by-layer printing of 3D structures in a microchannel. The printing layer could be predicted and controlled solely by programming the fluid input. Our strategy provides generalizability to fit with different light sources, pattern generators, and photopolymers. The integration of the microfluidic channel could enable high-degree multi-material integration without complicated modification of the 3D printer.

三维打印技术,尤其是基于立体光刻技术(SLA)的三维打印技术,因其卓越的空间分辨率而为微观结构的快速原型制作和制造带来了革命性的变化。然而,由于使用大桶和机械控制的 Z 层生成,SLA 型三维打印在多材料集成和自适应 Z 层切片方面面临着固有的挑战。在本文中,我们提出了一种新模式的概念,即利用微流体通道中的动态多相层流来实现三维物体的制造。我们的策略被称为 "原位三维聚合",它结合了原位聚合和共流水性两相系统,在微通道中实现了三维结构的切片、聚合和逐层打印。只需对输入的流体进行编程,就能预测和控制打印层。我们的策略具有通用性,可适用于不同的光源、图案生成器和光聚合物。微流体通道的集成可实现高度的多材料集成,而无需对三维打印机进行复杂的改装。
{"title":"<i>In situ</i> 3D polymerization (<i>IS</i>-3DP): Implementing an aqueous two-phase system for the formation of 3D objects inside a microfluidic channel.","authors":"Guillermo Ramirez-Alvarado, Gabriel Garibaldi, Chiraz Toujani, Gongchen Sun","doi":"10.1063/5.0226620","DOIUrl":"10.1063/5.0226620","url":null,"abstract":"<p><p>Rapid prototyping and fabrication of microstructure have been revolutionized by 3D printing, especially stereolithography (SLA) based techniques due to the superior spatial resolution they offer. However, SLA-type 3D printing faces intrinsic challenges in multi-material integration and adaptive Z-layer slicing due to the use of a vat and a mechanically controlled Z-layer generation. In this paper, we present the conceptualization of a novel paradigm which uses dynamic and multi-phase laminar flow in a microfluidic channel to achieve fabrication of 3D objects. Our strategy, termed \"<i>in situ</i> 3D polymerization,\" combines <i>in situ</i> polymerization and co-flow aqueous two-phase systems and achieves slicing, polymerization, and layer-by-layer printing of 3D structures in a microchannel. The printing layer could be predicted and controlled solely by programming the fluid input. Our strategy provides generalizability to fit with different light sources, pattern generators, and photopolymers. The integration of the microfluidic channel could enable high-degree multi-material integration without complicated modification of the 3D printer.</p>","PeriodicalId":8855,"journal":{"name":"Biomicrofluidics","volume":"18 5","pages":"054113"},"PeriodicalIF":2.6,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11510685/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142493969","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dynamic cellular responses to gravitational forces: Exploring the impact on white blood cell(s). 细胞对重力的动态反应:探索对白细胞的影响。
IF 2.6 4区 工程技术 Q2 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-10-21 eCollection Date: 2024-09-01 DOI: 10.1063/5.0216617
Anirudh Murali, Ram Rup Sarkar

In recent years, the allure of space exploration and human spaceflight has surged, yet the effects of microgravity on the human body remain a significant concern. Immune and red blood cells rely on hematic or lymphatic streams as their primary means of transportation, posing notable challenges under microgravity conditions. This study sheds light on the intricate dynamics of cell behavior when suspended in bio-fluid under varying gravitational forces. Utilizing the dissipative particle dynamics approach, blood and white blood cells were modeled, with gravity applied as an external force along the vertical axis, ranging from 0 to 2 g in parameter sweeps. The results revealed discernible alterations in the cell shape and spatial alignment in response to gravity, quantified through metrics such as elongation and deformation indices, pitch angle, and normalized center of mass. Statistical analysis using the Mann-Whitney U test underscored clear distinctions between microgravity (<1 g) and hypergravity (>1 g) samples compared to normal gravity (1 g). Furthermore, the examination of forces exerted on the solid, including drag, shear stress, and solid forces, unveiled a reduction in the magnitude as the gravitational force increased. Additional analysis through dimensionless numbers unveiled the dominance of capillary and gravitational forces, which impacted cell velocity, leading to closer proximity to the wall and heightened viscous interaction with surrounding fluid particles. These interactions prompted shape alterations and reduced white blood cell area while increasing red blood cells. This study represents an effort in comprehending the effects of gravity on blood cells, offering insights into the intricate interplay between cellular dynamics and gravitational forces.

近年来,太空探索和载人航天的吸引力急剧上升,但微重力对人体的影响仍然是一个重大问题。免疫细胞和红细胞依靠血液或淋巴流作为主要运输方式,这在微重力条件下带来了显著的挑战。这项研究揭示了细胞在不同重力作用下悬浮在生物流体中的复杂动态行为。利用耗散粒子动力学方法,对血液和白细胞进行建模,重力作为外力沿垂直轴施加,参数范围从 0 g 到 2 g。结果显示,细胞形状和空间排列在重力作用下发生了明显变化,这些变化通过伸长和变形指数、俯仰角和归一化质心等指标进行量化。使用 Mann-Whitney U 检验进行的统计分析表明,与正常重力(1 克)相比,微重力(1 克)样本之间存在明显差异。此外,对固体所受力(包括阻力、剪切应力和固体力)的研究表明,随着重力的增加,固体所受力的大小也在减小。通过无量纲数字进行的其他分析揭示了毛细管力和重力的主导作用,它们影响了细胞的速度,导致细胞更接近细胞壁,并增强了与周围流体颗粒的粘性相互作用。这些相互作用促使形状发生改变,在增加红细胞的同时减少了白细胞的面积。这项研究为理解重力对血细胞的影响做出了努力,为细胞动力学和重力之间错综复杂的相互作用提供了见解。
{"title":"Dynamic cellular responses to gravitational forces: Exploring the impact on white blood cell(s).","authors":"Anirudh Murali, Ram Rup Sarkar","doi":"10.1063/5.0216617","DOIUrl":"https://doi.org/10.1063/5.0216617","url":null,"abstract":"<p><p>In recent years, the allure of space exploration and human spaceflight has surged, yet the effects of microgravity on the human body remain a significant concern. Immune and red blood cells rely on hematic or lymphatic streams as their primary means of transportation, posing notable challenges under microgravity conditions. This study sheds light on the intricate dynamics of cell behavior when suspended in bio-fluid under varying gravitational forces. Utilizing the dissipative particle dynamics approach, blood and white blood cells were modeled, with gravity applied as an external force along the vertical axis, ranging from 0 to 2 g in parameter sweeps. The results revealed discernible alterations in the cell shape and spatial alignment in response to gravity, quantified through metrics such as elongation and deformation indices, pitch angle, and normalized center of mass. Statistical analysis using the Mann-Whitney U test underscored clear distinctions between microgravity (<1 g) and hypergravity (>1 g) samples compared to normal gravity (1 g). Furthermore, the examination of forces exerted on the solid, including drag, shear stress, and solid forces, unveiled a reduction in the magnitude as the gravitational force increased. Additional analysis through dimensionless numbers unveiled the dominance of capillary and gravitational forces, which impacted cell velocity, leading to closer proximity to the wall and heightened viscous interaction with surrounding fluid particles. These interactions prompted shape alterations and reduced white blood cell area while increasing red blood cells. This study represents an effort in comprehending the effects of gravity on blood cells, offering insights into the intricate interplay between cellular dynamics and gravitational forces.</p>","PeriodicalId":8855,"journal":{"name":"Biomicrofluidics","volume":"18 5","pages":"054112"},"PeriodicalIF":2.6,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11495877/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142493970","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent developments in preventing catheter-related infections based on biofilms: A comprehensive review. 基于生物膜预防导管相关感染的最新进展:全面回顾。
IF 2.6 4区 工程技术 Q2 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-10-11 eCollection Date: 2024-09-01 DOI: 10.1063/5.0195165
Byeongchan So, Jongwon Kim, Jung Ki Jo, Hongyun So

Urinary and vascular catheters are among the most commonly used medical devices. However, infections caused by biofilm formation on the surface of catheters are a major cause of healthcare-associated infections. Traditional methods, such as using antimicrobials to prevent such infections, generally have short-term effects, and treatment is challenging owing to the emergence of antimicrobial-resistant bacteria. This review aims to evaluate the limitations of conventional catheter-related infection prevention efficacy, such as currently used antimicrobials, and analyze the efficacy and limitations of potential alternatives to prevent catheter-related infections that have not yet been commercialized, classified by the transition stages of biofilm formation. We intend to provide profound insights into the ideal technologies for preventing catheter-associated tract infections and present perspectives on future directions in this field.

导尿管和血管导管是最常用的医疗器械之一。然而,导尿管表面形成生物膜导致的感染是医疗相关感染的主要原因。使用抗菌药等传统方法来预防此类感染通常只有短期效果,而且由于抗菌药耐药细菌的出现,治疗也面临挑战。本综述旨在评估目前使用的抗菌药等传统导管相关感染预防功效的局限性,并按照生物膜形成的过渡阶段,分析尚未商业化的潜在替代品的功效和局限性,以预防导管相关感染。我们希望为预防导管相关道感染的理想技术提供深刻见解,并对该领域的未来发展方向提出展望。
{"title":"Recent developments in preventing catheter-related infections based on biofilms: A comprehensive review.","authors":"Byeongchan So, Jongwon Kim, Jung Ki Jo, Hongyun So","doi":"10.1063/5.0195165","DOIUrl":"https://doi.org/10.1063/5.0195165","url":null,"abstract":"<p><p>Urinary and vascular catheters are among the most commonly used medical devices. However, infections caused by biofilm formation on the surface of catheters are a major cause of healthcare-associated infections. Traditional methods, such as using antimicrobials to prevent such infections, generally have short-term effects, and treatment is challenging owing to the emergence of antimicrobial-resistant bacteria. This review aims to evaluate the limitations of conventional catheter-related infection prevention efficacy, such as currently used antimicrobials, and analyze the efficacy and limitations of potential alternatives to prevent catheter-related infections that have not yet been commercialized, classified by the transition stages of biofilm formation. We intend to provide profound insights into the ideal technologies for preventing catheter-associated tract infections and present perspectives on future directions in this field.</p>","PeriodicalId":8855,"journal":{"name":"Biomicrofluidics","volume":"18 5","pages":"051506"},"PeriodicalIF":2.6,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11470810/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142457091","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Trajectory analysis of Bacillus subtilis in micro-droplets. 微滴中枯草芽孢杆菌的轨迹分析。
IF 2.6 4区 工程技术 Q2 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-10-09 eCollection Date: 2024-09-01 DOI: 10.1063/5.0211134
Yangyang Tang, Xiaolei Cao, Rui Kong, Xianyong Li, Jiankun Wang, Jin Wu, Xiaoling Wang

In order to study Bacillus subtilis biofilm formation in microdroplets, we use microfluidics technology to make the droplets and confocal microscopy to capture bacterial movement and biofilm formation in the droplets. We develop a multi-target tracking methodology, using a YOLOv5 detector to identify cells and a DeepSORT algorithm to track cell movements. We find that Bacillus subtilis bacteria with autonomous migration and biofilm-forming ability prefer to cluster and swarm near the microdroplet surface, rather than in the droplet interior. Bacterial mobility depends on phenotype and spatial location within the droplet. The motile cells move about 3.5 times faster than the matrix-producing cells. When the cells are near the wall of the droplet, the direction of the motion of motile cells is along that wall. When the cells are inside the droplet, the direction of the motion of motile cells is disordered, i.e., there is no clear directional or goal-oriented movement. This contrast increases the cell contact probability and facilitates the formation of a Bacillus subtilis biofilm in the droplet. Furthermore, we develop a mathematical model to describe the motion behavior of Bacillus subtilis in microdroplets, which is useful for exploring the influence of motility on biofilm formation.

为了研究枯草杆菌在微液滴中的生物膜形成,我们使用微流控技术制造微液滴,并使用共聚焦显微镜捕捉微液滴中的细菌运动和生物膜形成。我们开发了一种多目标跟踪方法,使用 YOLOv5 检测器识别细胞,并使用 DeepSORT 算法跟踪细胞运动。我们发现,具有自主迁移和生物膜形成能力的枯草芽孢杆菌更喜欢在微液滴表面附近聚集成群,而不是在液滴内部。细菌的移动能力取决于表型和在液滴中的空间位置。运动细胞的移动速度是基质生成细胞的 3.5 倍。当细胞靠近液滴壁时,运动细胞沿着液滴壁运动。当细胞位于液滴内部时,运动细胞的运动方向是无序的,即没有明确的运动方向或目标。这种反差增加了细胞接触概率,有利于液滴中枯草芽孢杆菌生物膜的形成。此外,我们还建立了一个数学模型来描述枯草芽孢杆菌在微液滴中的运动行为,该模型有助于探索运动对生物膜形成的影响。
{"title":"Trajectory analysis of <i>Bacillus subtilis</i> in micro-droplets.","authors":"Yangyang Tang, Xiaolei Cao, Rui Kong, Xianyong Li, Jiankun Wang, Jin Wu, Xiaoling Wang","doi":"10.1063/5.0211134","DOIUrl":"https://doi.org/10.1063/5.0211134","url":null,"abstract":"<p><p>In order to study <i>Bacillus subtilis</i> biofilm formation in microdroplets, we use microfluidics technology to make the droplets and confocal microscopy to capture bacterial movement and biofilm formation in the droplets. We develop a multi-target tracking methodology, using a YOLOv5 detector to identify cells and a DeepSORT algorithm to track cell movements. We find that <i>Bacillus subtilis</i> bacteria with autonomous migration and biofilm-forming ability prefer to cluster and swarm near the microdroplet surface, rather than in the droplet interior. Bacterial mobility depends on phenotype and spatial location within the droplet. The motile cells move about 3.5 times faster than the matrix-producing cells. When the cells are near the wall of the droplet, the direction of the motion of motile cells is along that wall. When the cells are inside the droplet, the direction of the motion of motile cells is disordered, i.e., there is no clear directional or goal-oriented movement. This contrast increases the cell contact probability and facilitates the formation of a <i>Bacillus subtilis</i> biofilm in the droplet. Furthermore, we develop a mathematical model to describe the motion behavior of <i>Bacillus subtilis</i> in microdroplets, which is useful for exploring the influence of motility on biofilm formation.</p>","PeriodicalId":8855,"journal":{"name":"Biomicrofluidics","volume":"18 5","pages":"054111"},"PeriodicalIF":2.6,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11466507/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142457092","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A simple guideline for designing droplet microfluidic chips to achieve an improved single (bio)particle encapsulation rate using a stratified flow-assisted particle ordering method. 设计液滴微流控芯片的简单指南,利用分层流动辅助粒子排序法提高单个(生物)粒子的封装率。
IF 2.6 4区 工程技术 Q2 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-10-09 eCollection Date: 2024-09-01 DOI: 10.1063/5.0219528
Thu H Nguyen, Noura Ezzo, Sarah Chan, Evelyn K F Yim, Carolyn L Ren

Encapsulation of a single (bio)particle into individual droplets (referred to as single encapsulation) presents tremendous potential for precise biological and chemical reactions at the single (bio)particle level. Previously demonstrated successful strategies often rely on the use of high flow rates, gel, or viscoelastic materials for initial cell ordering prior to encapsulation into droplets, which could potentially challenge the system's operation. We propose to enhance the single encapsulation rate by using a stratified flow structure to focus and pre-order the (bio)particles before encapsulation. The stratified flow structure is formed using two simple aqueous Newtonian fluids with a viscosity contrast, which together serve as the dispersed phase. The single encapsulation rate is influenced by many parameters, including fluid viscosity contrast, geometric conditions, flow conditions and flow rate ratios, and dimensionless numbers such as the capillary number. This study focuses on investigating the influences of these parameters on the focused stream of the stratified flow, which is key for single encapsulation. The results allow the proposal of a simple guideline that can be adopted to design droplet microfluidic chips with an improved single encapsulation rate demanded by a wide range of applications. The guideline was validated by performing the single encapsulation of mouse embryonic stem cells suspended in a gelatin-methacryloyl solution in individual droplets of phosphate buffer saline, achieving a single encapsulation efficiency of up to 70%.

将单个(生物)颗粒封装到单个液滴中(称为单个封装)为在单个(生物)颗粒水平上进行精确的生物和化学反应带来了巨大的潜力。以前证明的成功策略通常依赖于使用高流速、凝胶或粘弹性材料进行初始细胞有序化,然后再封装成液滴,这可能会对系统的运行造成潜在挑战。我们建议在封装前使用分层流动结构对(生物)颗粒进行聚焦和预排序,从而提高单次封装率。分层流动结构由两种具有粘度对比的简单牛顿水性流体形成,共同作为分散相。单一封装率受许多参数的影响,包括流体粘度对比、几何条件、流动条件和流速比以及毛细管数等无量纲数。本研究的重点是调查这些参数对分层流的聚焦流的影响,这对单次封装至关重要。研究结果提出了一个简单的指导原则,可用于设计液滴微流控芯片,提高单次封装率,满足广泛的应用需求。通过将悬浮在明胶-甲基丙烯酰溶液中的小鼠胚胎干细胞单个封装在磷酸盐缓冲盐溶液的液滴中,验证了该指南的有效性,单个封装效率高达 70%。
{"title":"A simple guideline for designing droplet microfluidic chips to achieve an improved single (bio)particle encapsulation rate using a stratified flow-assisted particle ordering method.","authors":"Thu H Nguyen, Noura Ezzo, Sarah Chan, Evelyn K F Yim, Carolyn L Ren","doi":"10.1063/5.0219528","DOIUrl":"https://doi.org/10.1063/5.0219528","url":null,"abstract":"<p><p>Encapsulation of a single (bio)particle into individual droplets (referred to as single encapsulation) presents tremendous potential for precise biological and chemical reactions at the single (bio)particle level. Previously demonstrated successful strategies often rely on the use of high flow rates, gel, or viscoelastic materials for initial cell ordering prior to encapsulation into droplets, which could potentially challenge the system's operation. We propose to enhance the single encapsulation rate by using a stratified flow structure to focus and pre-order the (bio)particles before encapsulation. The stratified flow structure is formed using two simple aqueous Newtonian fluids with a viscosity contrast, which together serve as the dispersed phase. The single encapsulation rate is influenced by many parameters, including fluid viscosity contrast, geometric conditions, flow conditions and flow rate ratios, and dimensionless numbers such as the capillary number. This study focuses on investigating the influences of these parameters on the focused stream of the stratified flow, which is key for single encapsulation. The results allow the proposal of a simple guideline that can be adopted to design droplet microfluidic chips with an improved single encapsulation rate demanded by a wide range of applications. The guideline was validated by performing the single encapsulation of mouse embryonic stem cells suspended in a gelatin-methacryloyl solution in individual droplets of phosphate buffer saline, achieving a single encapsulation efficiency of up to 70%.</p>","PeriodicalId":8855,"journal":{"name":"Biomicrofluidics","volume":"18 5","pages":"054110"},"PeriodicalIF":2.6,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11466506/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142457090","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Visualizing liquid distribution across hyphal networks with cellular resolution. 以细胞分辨率观察液体在整个菌丝网络中的分布。
IF 2.6 4区 工程技术 Q2 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-10-07 eCollection Date: 2024-09-01 DOI: 10.1063/5.0231656
Amelia J Clark, Emily Masters-Clark, Eleonora Moratto, Pilar Junier, Claire E Stanley

Filamentous fungi and fungal-like organisms contribute to a wide range of important ecosystem functions. Evidence has shown the movement of liquid across mycelial networks in unsaturated environments, such as soil. However, tools to investigate liquid movement along hyphae at the level of the single cell are still lacking. Microfluidic devices permit the study of fungal and fungal-like organisms with cellular resolution as they can confine hyphae to a single optical plane, which is compatible with microscopy imaging over longer timescales and allows for precise control of the microchannel environment. The aim of this study was to develop a method that enables the visualization and quantification of liquid movement on hyphae of fungal and fungal-like microorganisms. For this, the fungal-fungal interaction microfluidic device was modified to allow for the maintenance of unsaturated microchannel conditions. Fluorescein-containing growth medium solidified with agar was used to track liquid transported by hyphae via fluorescence microscopy. Our key findings highlight the suitability of this novel methodology for the visualization of liquid movement by hyphae over varying time scales and the ability to quantify the movement of liquid along hyphae. Furthermore, we showed that at the cellular level, extracellular movement of liquid along hyphae can be bidirectional and highly dynamic, uncovering a possible link between liquid movement and hyphal growth characteristics. We envisage that this method can be applied to facilitate future research probing the parameters contributing to hyphal liquid movement and is an essential step for studying the phenomenon of fungal highways.

丝状真菌和类真菌生物对生态系统的多种重要功能做出了贡献。有证据表明,在土壤等非饱和环境中,液体会通过菌丝网络流动。然而,在单细胞水平上研究液体沿菌丝运动的工具仍然缺乏。微流体设备可以将菌丝限制在单个光学平面内,因此可以对真菌和类真菌生物进行细胞分辨率的研究,这与较长时间尺度的显微镜成像兼容,并可对微通道环境进行精确控制。本研究的目的是开发一种方法,使真菌和类真菌微生物菌丝上的液体运动可视化和定量化。为此,对真菌-真菌相互作用微流控装置进行了改进,使其能够维持不饱和微通道条件。含荧光素的生长培养基用琼脂固化,通过荧光显微镜追踪菌丝输送的液体。我们的主要研究结果突出表明,这种新方法适用于在不同时间尺度上观察液体通过菌丝的运动,并能量化液体沿菌丝的运动。此外,我们还发现,在细胞水平上,细胞外液体沿菌丝的运动可以是双向的,而且是高度动态的,这揭示了液体运动与菌丝生长特性之间可能存在的联系。我们认为,这种方法可用于促进未来的研究,探究导致菌丝液体运动的参数,是研究真菌高速公路现象的重要一步。
{"title":"Visualizing liquid distribution across hyphal networks with cellular resolution.","authors":"Amelia J Clark, Emily Masters-Clark, Eleonora Moratto, Pilar Junier, Claire E Stanley","doi":"10.1063/5.0231656","DOIUrl":"https://doi.org/10.1063/5.0231656","url":null,"abstract":"<p><p>Filamentous fungi and fungal-like organisms contribute to a wide range of important ecosystem functions. Evidence has shown the movement of liquid across mycelial networks in unsaturated environments, such as soil. However, tools to investigate liquid movement along hyphae at the level of the single cell are still lacking. Microfluidic devices permit the study of fungal and fungal-like organisms with cellular resolution as they can confine hyphae to a single optical plane, which is compatible with microscopy imaging over longer timescales and allows for precise control of the microchannel environment. The aim of this study was to develop a method that enables the visualization and quantification of liquid movement on hyphae of fungal and fungal-like microorganisms. For this, the fungal-fungal interaction microfluidic device was modified to allow for the maintenance of unsaturated microchannel conditions. Fluorescein-containing growth medium solidified with agar was used to track liquid transported by hyphae via fluorescence microscopy. Our key findings highlight the suitability of this novel methodology for the visualization of liquid movement by hyphae over varying time scales and the ability to quantify the movement of liquid along hyphae. Furthermore, we showed that at the cellular level, extracellular movement of liquid along hyphae can be bidirectional and highly dynamic, uncovering a possible link between liquid movement and hyphal growth characteristics. We envisage that this method can be applied to facilitate future research probing the parameters contributing to hyphal liquid movement and is an essential step for studying the phenomenon of fungal highways.</p>","PeriodicalId":8855,"journal":{"name":"Biomicrofluidics","volume":"18 5","pages":"054109"},"PeriodicalIF":2.6,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11460992/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142387614","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Colloidal droplet desiccation on a electrowetting-on-dielectric (EWOD) platform. 电介质电润湿(EWOD)平台上的胶体液滴干燥。
IF 2.6 4区 工程技术 Q2 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-10-02 eCollection Date: 2024-09-01 DOI: 10.1063/5.0209815
Udita Uday Ghosh, Trina Dhara, Janesh Bakshi, Kalpita Nath, Sunando DasGupta

The physics of the effects of electric field on the desiccation of colloidal droplets, comprising of dispersed negatively charged nanoparticles [2 μl, 1(w/w. %)], are studied in a standard electrowetting-on-a-dielectric configuration. The extent of contact line pinning during evaporation is found to be a function of the magnitude of the applied voltage and quantified in terms of the dimensionless electrowetting number (η). The pinned contact line led to higher particle compaction as evidenced by the characterization of dried colloidal film thicknesses. Crack formation and their dynamics have been analyzed in detail to elicit the interplay of forces near the contact line region and on the compaction front. These aspects of crack formation are elucidated in the light of magnitude and polarity of the applied electric field. It is found to influence the crack front initiation velocity, the geometry, the number of cracks, and an attempt is made to explain the same via first principle-based approaches. Therefore, this study indicates the possibility of using electrowetting as a technique to fine-tune the crack formation behavior in thin colloidal films.

在标准的电介质电润湿配置中,研究了电场对胶体液滴干燥的物理影响,胶体液滴由分散的带负电纳米粒子 [2 μl, 1(w/w. %)]组成。研究发现,蒸发过程中接触线的针化程度是外加电压大小的函数,并以无量纲电润湿数 (η) 进行量化。从干燥胶体膜厚度的表征中可以看出,针状接触线导致更高的颗粒压实度。对裂纹的形成及其动态进行了详细分析,以揭示接触线区域附近和压实前沿的相互作用力。根据外加电场的大小和极性阐明了裂纹形成的这些方面。研究发现,电场会影响裂纹前沿的起始速度、几何形状和裂纹数量,并试图通过基于第一原理的方法来解释这些问题。因此,这项研究表明,可以使用电润湿技术对胶体薄膜的裂纹形成行为进行微调。
{"title":"Colloidal droplet desiccation on a electrowetting-on-dielectric (EWOD) platform.","authors":"Udita Uday Ghosh, Trina Dhara, Janesh Bakshi, Kalpita Nath, Sunando DasGupta","doi":"10.1063/5.0209815","DOIUrl":"10.1063/5.0209815","url":null,"abstract":"<p><p>The physics of the effects of electric field on the desiccation of colloidal droplets, comprising of dispersed negatively charged nanoparticles [2 <i>μ</i>l, 1(w/w. %)], are studied in a standard electrowetting-on-a-dielectric configuration. The extent of contact line pinning during evaporation is found to be a function of the magnitude of the applied voltage and quantified in terms of the dimensionless electrowetting number (<i>η</i>). The pinned contact line led to higher particle compaction as evidenced by the characterization of dried colloidal film thicknesses. Crack formation and their dynamics have been analyzed in detail to elicit the interplay of forces near the contact line region and on the compaction front. These aspects of crack formation are elucidated in the light of magnitude and polarity of the applied electric field. It is found to influence the crack front initiation velocity, the geometry, the number of cracks, and an attempt is made to explain the same via first principle-based approaches. Therefore, this study indicates the possibility of using electrowetting as a technique to fine-tune the crack formation behavior in thin colloidal films.</p>","PeriodicalId":8855,"journal":{"name":"Biomicrofluidics","volume":"18 5","pages":"054108"},"PeriodicalIF":2.6,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11449496/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142380034","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Artificial blood for therapeutic and laboratory usage: Where do we stand? 用于治疗和实验室的人造血液:现状如何?
IF 2.6 4区 工程技术 Q2 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-09-25 eCollection Date: 2024-09-01 DOI: 10.1063/5.0186931
Pulak Kumar Ray, Pawan Kumar, Somnath Roy, Arup Kumar Das, Prasanta Kumar Das

The scarcity of blood for transfusion purposes has been widely acknowledged. Surgical therapeutic processes, war zones, and post-disaster treatments demand a huge amount of blood. Modern-day laboratories also require blood for bioengineering experimentation. Therefore, an artificially devised solution capable of mimicking the blood functions from biological and engineering relevance would be a noteworthy discovery of contemporary science. The experience drawn from discarded century-old blood substitutes has led us to technologically more advanced present-day solutions, which are better at carrying out the physiological functions of blood. Aiming at safety, stability, non-toxicity, and compatibility in terms of immuno-response, a remarkable number of substitutes are being tried to mimic the physiological properties and functions of red blood cells, platelets, plasma, and white blood cells. Despite significant efforts and time devoted, for transfusion, no product so far has been able to replace natural blood. This article puts together the important developments in blood substitutes that have evolved over the years, including substitutes for clinical as well as engineering requirements. It also points out the recent endeavors of synthesizing blood cells through modern synthetic routes. It has been highlighted that none of the blood substitutes have achieved the required efficacy so that they can be used in vivo. Finally, the emerging trends and future research needs have been stressed upon.

用于输血的血液稀缺已得到广泛承认。外科治疗过程、战区和灾后治疗都需要大量血液。现代实验室的生物工程实验也需要血液。因此,能够从生物学和工程学角度模拟血液功能的人工设计方案将是当代科学的一项重大发现。从废弃的百年血液替代品中汲取的经验,让我们找到了技术上更先进的当今解决方案,它们能更好地实现血液的生理功能。为了保证安全性、稳定性、无毒性以及在免疫反应方面的兼容性,人们正在尝试大量的替代品来模拟红细胞、血小板、血浆和白细胞的生理特性和功能。尽管在输血方面投入了大量的精力和时间,但迄今为止还没有一种产品能够替代天然血液。本文总结了多年来血液替代品的重要发展,包括满足临床和工程需求的替代品。文章还指出了最近通过现代合成途径合成血细胞的努力。报告强调,目前还没有一种血液替代品达到所需的功效,因此无法在体内使用。最后,还强调了新出现的趋势和未来的研究需求。
{"title":"Artificial blood for therapeutic and laboratory usage: Where do we stand?","authors":"Pulak Kumar Ray, Pawan Kumar, Somnath Roy, Arup Kumar Das, Prasanta Kumar Das","doi":"10.1063/5.0186931","DOIUrl":"https://doi.org/10.1063/5.0186931","url":null,"abstract":"<p><p>The scarcity of blood for transfusion purposes has been widely acknowledged. Surgical therapeutic processes, war zones, and post-disaster treatments demand a huge amount of blood. Modern-day laboratories also require blood for bioengineering experimentation. Therefore, an artificially devised solution capable of mimicking the blood functions from biological and engineering relevance would be a noteworthy discovery of contemporary science. The experience drawn from discarded century-old blood substitutes has led us to technologically more advanced present-day solutions, which are better at carrying out the physiological functions of blood. Aiming at safety, stability, non-toxicity, and compatibility in terms of immuno-response, a remarkable number of substitutes are being tried to mimic the physiological properties and functions of red blood cells, platelets, plasma, and white blood cells. Despite significant efforts and time devoted, for transfusion, no product so far has been able to replace natural blood. This article puts together the important developments in blood substitutes that have evolved over the years, including substitutes for clinical as well as engineering requirements. It also points out the recent endeavors of synthesizing blood cells through modern synthetic routes. It has been highlighted that none of the blood substitutes have achieved the required efficacy so that they can be used <i>in vivo</i>. Finally, the emerging trends and future research needs have been stressed upon.</p>","PeriodicalId":8855,"journal":{"name":"Biomicrofluidics","volume":"18 5","pages":"051505"},"PeriodicalIF":2.6,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11427025/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142340449","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Biomicrofluidics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1