{"title":"Recent advances on palladium incorporated clay-based heterogeneous catalyst for carbon–carbon coupling reactions","authors":"Periasamy Vinoth Kumar, Selvaraj Mohana Roopan, Gunabalan Madhumitha","doi":"10.1007/s00706-023-03148-2","DOIUrl":null,"url":null,"abstract":"<p>In recent years, heterogeneous catalysts have been developed due to their inherent activity, easily recoverable and reusable nature, and eco-friendly nature. The palladium nanoparticles have excellent catalytic activity due to their outstanding performance as catalysts for various chemical reactions. Palladium nanoparticle-incorporated clay-supported heterogeneous composites have been developed recently and possess excellent activity as catalysts for various organic transformations. Palladium nanoparticle-supported clay materials have a high surface area, porosity, ion exchangeability, and binding nature. Due to these criteria, clay-palladium composites act as better catalysts. This review has tried to accentuate the potential advantages of the clay-based heterogeneous catalyst in various carbon–carbon coupling reactions. This review detailed the clay-supported palladium nanoparticles used as catalysts for the construction of C–C moieties, like Suzuki–Miyaura cross-coupling, Sonogashira coupling, Ullmann coupling, and Heck coupling reactions. The advantages and merits of clay-supported palladium catalysts compared with normal conventional methods are easily recovered and reused, reduced palladium metal leaching, and reduced byproduct formation.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>","PeriodicalId":19011,"journal":{"name":"Monatshefte für Chemie / Chemical Monthly","volume":"92 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Monatshefte für Chemie / Chemical Monthly","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00706-023-03148-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In recent years, heterogeneous catalysts have been developed due to their inherent activity, easily recoverable and reusable nature, and eco-friendly nature. The palladium nanoparticles have excellent catalytic activity due to their outstanding performance as catalysts for various chemical reactions. Palladium nanoparticle-incorporated clay-supported heterogeneous composites have been developed recently and possess excellent activity as catalysts for various organic transformations. Palladium nanoparticle-supported clay materials have a high surface area, porosity, ion exchangeability, and binding nature. Due to these criteria, clay-palladium composites act as better catalysts. This review has tried to accentuate the potential advantages of the clay-based heterogeneous catalyst in various carbon–carbon coupling reactions. This review detailed the clay-supported palladium nanoparticles used as catalysts for the construction of C–C moieties, like Suzuki–Miyaura cross-coupling, Sonogashira coupling, Ullmann coupling, and Heck coupling reactions. The advantages and merits of clay-supported palladium catalysts compared with normal conventional methods are easily recovered and reused, reduced palladium metal leaching, and reduced byproduct formation.