{"title":"The probable reasons of arsenic susceptibility in a chronically exposed population of West Bengal","authors":"Ashok Kumar Giri , Nilanjana Banerjee","doi":"10.1016/j.mrgentox.2024.503725","DOIUrl":null,"url":null,"abstract":"<div><p><span>Arsenic is potent human carcinogen which affects millions of people across the globe. Arsenic induced pre-cancerous and cancerous skin lesions are hall marks of chronic </span>arsenic toxicity<span><span>. Even then, only 15%–20% of the population manifest arsenic-induced skin lesions but the rest do not, the reason for which in not very clear. Not only that, conjunctival irritations of the eyes, peripheral neuropathy and respiratory distress are the non-dermatological health effects which are often manifested in them in addition to the cancers of skin and other internal organs. In this work we have considered 233 arsenic exposed individuals with skin lesions and 205 arsenic exposed individuals without skin lesions from the highly arsenic affected Murshidabad district of West Bengal. We have compared arsenic exposure in the two groups through </span>drinking water<span>. Both the study groups have similar levels of arsenic exposure, drinking same arsenic laden water. Results show that higher amounts of arsenic were retained in the nails and hair of the skin lesion group compared to the no skin lesion group. Significant higher amounts of chromosomal aberration and micronucleus formation were found in the skin lesion group, than the no skin lesion group. Incidences of conjunctival irritations of the eyes, peripheral neuropathy and respiratory distress were much higher in the former group compared to the later. We, thus found that one group was more susceptible than the other, even with similar levels of arsenic exposure. We have tried to identify and discuss the probable reasons for this observation with reference to our previous works in the exposed population from West Bengal, India.</span></span></p></div>","PeriodicalId":18799,"journal":{"name":"Mutation research. Genetic toxicology and environmental mutagenesis","volume":"894 ","pages":"Article 503725"},"PeriodicalIF":2.3000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mutation research. Genetic toxicology and environmental mutagenesis","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1383571824000019","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Arsenic is potent human carcinogen which affects millions of people across the globe. Arsenic induced pre-cancerous and cancerous skin lesions are hall marks of chronic arsenic toxicity. Even then, only 15%–20% of the population manifest arsenic-induced skin lesions but the rest do not, the reason for which in not very clear. Not only that, conjunctival irritations of the eyes, peripheral neuropathy and respiratory distress are the non-dermatological health effects which are often manifested in them in addition to the cancers of skin and other internal organs. In this work we have considered 233 arsenic exposed individuals with skin lesions and 205 arsenic exposed individuals without skin lesions from the highly arsenic affected Murshidabad district of West Bengal. We have compared arsenic exposure in the two groups through drinking water. Both the study groups have similar levels of arsenic exposure, drinking same arsenic laden water. Results show that higher amounts of arsenic were retained in the nails and hair of the skin lesion group compared to the no skin lesion group. Significant higher amounts of chromosomal aberration and micronucleus formation were found in the skin lesion group, than the no skin lesion group. Incidences of conjunctival irritations of the eyes, peripheral neuropathy and respiratory distress were much higher in the former group compared to the later. We, thus found that one group was more susceptible than the other, even with similar levels of arsenic exposure. We have tried to identify and discuss the probable reasons for this observation with reference to our previous works in the exposed population from West Bengal, India.
期刊介绍:
Mutation Research - Genetic Toxicology and Environmental Mutagenesis (MRGTEM) publishes papers advancing knowledge in the field of genetic toxicology. Papers are welcomed in the following areas:
New developments in genotoxicity testing of chemical agents (e.g. improvements in methodology of assay systems and interpretation of results).
Alternatives to and refinement of the use of animals in genotoxicity testing.
Nano-genotoxicology, the study of genotoxicity hazards and risks related to novel man-made nanomaterials.
Studies of epigenetic changes in relation to genotoxic effects.
The use of structure-activity relationships in predicting genotoxic effects.
The isolation and chemical characterization of novel environmental mutagens.
The measurement of genotoxic effects in human populations, when accompanied by quantitative measurements of environmental or occupational exposures.
The application of novel technologies for assessing the hazard and risks associated with genotoxic substances (e.g. OMICS or other high-throughput approaches to genotoxicity testing).
MRGTEM is now accepting submissions for a new section of the journal: Current Topics in Genotoxicity Testing, that will be dedicated to the discussion of current issues relating to design, interpretation and strategic use of genotoxicity tests. This section is envisaged to include discussions relating to the development of new international testing guidelines, but also to wider topics in the field. The evaluation of contrasting or opposing viewpoints is welcomed as long as the presentation is in accordance with the journal''s aims, scope, and policies.