Anandapadmanabhan A. Rajendran, Keying Guo, Alberto Alvarez-Fernandez, Thomas R. Gengenbach, Marina B. Velasco, Maximiliano J. Fornerod, Kandeel Shafique, Máté Füredi, Pilar Formentín, Hedieh Haji-Hashemi, Stefan Guldin, Nicolas H. Voelcker, Xavier Cetó, Beatriz Prieto-Simón
{"title":"A new class of porous silicon electrochemical transducers built from pyrolyzed polyfurfuryl alcohol","authors":"Anandapadmanabhan A. Rajendran, Keying Guo, Alberto Alvarez-Fernandez, Thomas R. Gengenbach, Marina B. Velasco, Maximiliano J. Fornerod, Kandeel Shafique, Máté Füredi, Pilar Formentín, Hedieh Haji-Hashemi, Stefan Guldin, Nicolas H. Voelcker, Xavier Cetó, Beatriz Prieto-Simón","doi":"10.1016/j.mtadv.2024.100464","DOIUrl":null,"url":null,"abstract":"<p>Carbon-based nanomaterials are key to developing high-performing electrochemical sensors with improved sensitivity and selectivity. Nonetheless, limitations in their fabrication and integration into devices often constrain their practical applications. Moreover, carbon nanomaterials-based electrochemical devices still face problems such as large background currents, poor stability, and slow kinetics. To advance towards a new class of carbon nanostructured electrochemical transducers, we propose the in-situ polymerization and carbonization of furfuryl alcohol (FA) on porous silicon (pSi) to produce a tailored and highly stable transducer. The thin layer of polyfurfuryl alcohol (PFA) that conformally coats the pSi scaffold transforms into nanoporous carbon when subjected to pyrolysis above 600 °C. The morphological and chemical properties of PFA-pSi were characterized by scanning electron microscopy, and Raman and X-ray photoelectron spectroscopies. Their stability and electrochemical performance were investigated by cyclic voltammetry and electrochemical impedance spectroscopy in [Fe(CN)<sub>6</sub>]<sup>3-/4-</sup>, [Ru(NH<sub>3</sub>)<sub>6</sub>]<sup>2+/3+</sup>, and hydroquinone. PFA-pSi showed superior electrochemical performance compared to screen-printed carbon electrodes while also surpassing glassy carbon electrodes in specific aspects. Besides, PFA-pSi has the additional advantage of easy tuning of the electroactive surface area. To prove its potential for biosensing purposes, a DNA sensor based on quantifying the partial pore blockage of the pSi upon target hybridization was built on PFA-pSi. The sensor showed a limit of detection of 1.4 pM, outperforming other sensors based on the same sensing mechanism.</p>","PeriodicalId":48495,"journal":{"name":"Materials Today Advances","volume":"8 7 1","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Advances","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.mtadv.2024.100464","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Carbon-based nanomaterials are key to developing high-performing electrochemical sensors with improved sensitivity and selectivity. Nonetheless, limitations in their fabrication and integration into devices often constrain their practical applications. Moreover, carbon nanomaterials-based electrochemical devices still face problems such as large background currents, poor stability, and slow kinetics. To advance towards a new class of carbon nanostructured electrochemical transducers, we propose the in-situ polymerization and carbonization of furfuryl alcohol (FA) on porous silicon (pSi) to produce a tailored and highly stable transducer. The thin layer of polyfurfuryl alcohol (PFA) that conformally coats the pSi scaffold transforms into nanoporous carbon when subjected to pyrolysis above 600 °C. The morphological and chemical properties of PFA-pSi were characterized by scanning electron microscopy, and Raman and X-ray photoelectron spectroscopies. Their stability and electrochemical performance were investigated by cyclic voltammetry and electrochemical impedance spectroscopy in [Fe(CN)6]3-/4-, [Ru(NH3)6]2+/3+, and hydroquinone. PFA-pSi showed superior electrochemical performance compared to screen-printed carbon electrodes while also surpassing glassy carbon electrodes in specific aspects. Besides, PFA-pSi has the additional advantage of easy tuning of the electroactive surface area. To prove its potential for biosensing purposes, a DNA sensor based on quantifying the partial pore blockage of the pSi upon target hybridization was built on PFA-pSi. The sensor showed a limit of detection of 1.4 pM, outperforming other sensors based on the same sensing mechanism.
期刊介绍:
Materials Today Advances is a multi-disciplinary, open access journal that aims to connect different communities within materials science. It covers all aspects of materials science and related disciplines, including fundamental and applied research. The focus is on studies with broad impact that can cross traditional subject boundaries. The journal welcomes the submissions of articles at the forefront of materials science, advancing the field. It is part of the Materials Today family and offers authors rigorous peer review, rapid decisions, and high visibility.