Partial mean-field model for neurotransmission dynamics

IF 1.9 4区 数学 Q2 BIOLOGY Mathematical Biosciences Pub Date : 2024-01-12 DOI:10.1016/j.mbs.2024.109143
Alberto Montefusco , Luzie Helfmann , Toluwani Okunola , Stefanie Winkelmann , Christof Schütte
{"title":"Partial mean-field model for neurotransmission dynamics","authors":"Alberto Montefusco ,&nbsp;Luzie Helfmann ,&nbsp;Toluwani Okunola ,&nbsp;Stefanie Winkelmann ,&nbsp;Christof Schütte","doi":"10.1016/j.mbs.2024.109143","DOIUrl":null,"url":null,"abstract":"<div><p>This article addresses reaction networks in which spatial and stochastic effects are of crucial importance. For such systems, particle-based models allow us to describe all microscopic details with high accuracy. However, they suffer from computational inefficiency if particle numbers and density get too large. Alternative coarse-grained-resolution models reduce computational effort tremendously, e.g., by replacing the particle distribution by a continuous concentration field governed by reaction–diffusion PDEs. We demonstrate how models on the different resolution levels can be combined into <em>hybrid models</em> that seamlessly combine the best of both worlds, describing molecular species with large copy numbers by macroscopic equations with spatial resolution while keeping the spatial–stochastic particle-based resolution level for the species with low copy numbers. To this end, we introduce a simple particle-based model for the binding dynamics of ions and vesicles at the heart of the neurotransmission process. Within this framework, we derive a novel hybrid model and present results from numerical experiments which demonstrate that the hybrid model allows for an accurate approximation of the full particle-based model in realistic scenarios.</p></div>","PeriodicalId":51119,"journal":{"name":"Mathematical Biosciences","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Biosciences","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0025556424000038","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

This article addresses reaction networks in which spatial and stochastic effects are of crucial importance. For such systems, particle-based models allow us to describe all microscopic details with high accuracy. However, they suffer from computational inefficiency if particle numbers and density get too large. Alternative coarse-grained-resolution models reduce computational effort tremendously, e.g., by replacing the particle distribution by a continuous concentration field governed by reaction–diffusion PDEs. We demonstrate how models on the different resolution levels can be combined into hybrid models that seamlessly combine the best of both worlds, describing molecular species with large copy numbers by macroscopic equations with spatial resolution while keeping the spatial–stochastic particle-based resolution level for the species with low copy numbers. To this end, we introduce a simple particle-based model for the binding dynamics of ions and vesicles at the heart of the neurotransmission process. Within this framework, we derive a novel hybrid model and present results from numerical experiments which demonstrate that the hybrid model allows for an accurate approximation of the full particle-based model in realistic scenarios.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
神经传递动力学的部分平均场模型
本文讨论的是空间和随机效应至关重要的反应网络。对于这类系统,基于粒子的模型能让我们高精度地描述所有微观细节。然而,如果粒子数量和密度过大,它们就会出现计算效率低下的问题。另一种粗粒度分辨率模型可以大大减少计算量,例如,用反应扩散 PDEs 控制的连续浓度场代替粒子分布。我们展示了如何将不同分辨率水平的模型组合成混合模型,从而无缝地结合两方面的优点,即通过具有空间分辨率的宏观方程来描述拷贝数大的分子物种,同时为拷贝数小的物种保留基于随机空间粒子的分辨率水平。为此,我们针对处于神经传递过程核心的离子和囊泡的结合动力学引入了一个简单的粒子模型。在这一框架内,我们推导出了一个新颖的混合模型,并展示了数值实验结果,这些结果表明混合模型可以在现实场景中精确逼近基于粒子的完整模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Mathematical Biosciences
Mathematical Biosciences 生物-生物学
CiteScore
7.50
自引率
2.30%
发文量
67
审稿时长
18 days
期刊介绍: Mathematical Biosciences publishes work providing new concepts or new understanding of biological systems using mathematical models, or methodological articles likely to find application to multiple biological systems. Papers are expected to present a major research finding of broad significance for the biological sciences, or mathematical biology. Mathematical Biosciences welcomes original research articles, letters, reviews and perspectives.
期刊最新文献
A joint-threshold Filippov model describing the effect of intermittent androgen-deprivation therapy in controlling prostate cancer Adolescent vaping behaviours: Exploring the dynamics of a social contagion model Editorial Board Modeling virus-stimulated proliferation of CD4+ T-cell, cell-to-cell transmission and viral loss in HIV infection dynamics A mathematical model of melatonin synthesis and interactions with the circadian clock
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1