Random forest based quantile-oriented sensitivity analysis indices estimation

IF 1 4区 数学 Q3 STATISTICS & PROBABILITY Computational Statistics Pub Date : 2024-01-12 DOI:10.1007/s00180-023-01450-5
Kévin Elie-Dit-Cosaque, Véronique Maume-Deschamps
{"title":"Random forest based quantile-oriented sensitivity analysis indices estimation","authors":"Kévin Elie-Dit-Cosaque, Véronique Maume-Deschamps","doi":"10.1007/s00180-023-01450-5","DOIUrl":null,"url":null,"abstract":"<p>We propose a random forest based estimation procedure for Quantile-Oriented Sensitivity Analysis—QOSA. In order to be efficient, a cross-validation step on the leaf size of trees is required. Our full estimation procedure is tested on both simulated data and a real dataset. Our estimators use either the bootstrap samples or the original sample in the estimation. Also, they are either based on a quantile plug-in procedure (the <i>R</i>-estimators) or on a direct minimization (the <i>Q</i>-estimators). This leads to 8 different estimators which are compared on simulations. From these simulations, it seems that the estimation method based on a direct minimization is better than the one plugging the quantile. This is a significant result because the method with direct minimization requires only one sample and could therefore be preferred.</p>","PeriodicalId":55223,"journal":{"name":"Computational Statistics","volume":"54 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00180-023-01450-5","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a random forest based estimation procedure for Quantile-Oriented Sensitivity Analysis—QOSA. In order to be efficient, a cross-validation step on the leaf size of trees is required. Our full estimation procedure is tested on both simulated data and a real dataset. Our estimators use either the bootstrap samples or the original sample in the estimation. Also, they are either based on a quantile plug-in procedure (the R-estimators) or on a direct minimization (the Q-estimators). This leads to 8 different estimators which are compared on simulations. From these simulations, it seems that the estimation method based on a direct minimization is better than the one plugging the quantile. This is a significant result because the method with direct minimization requires only one sample and could therefore be preferred.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于随机森林的面向量值的敏感性分析指数估算
我们为面向量子敏感性分析(Quantile-Oriented Sensitivity Analysis-QOSA)提出了一种基于随机森林的估算程序。为了提高效率,需要对树的叶片大小进行交叉验证。我们的完整估计程序在模拟数据和真实数据集上进行了测试。我们的估算器在估算中使用自举样本或原始样本。此外,它们要么基于量子插入程序(R-估计器),要么基于直接最小化(Q-估计器)。由此产生了 8 种不同的估计方法,并通过模拟进行了比较。从模拟结果来看,基于直接最小化的估计方法要优于插入量值的估计方法。这是一个重要的结果,因为直接最小化方法只需要一个样本,因此可以优先采用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computational Statistics
Computational Statistics 数学-统计学与概率论
CiteScore
2.90
自引率
0.00%
发文量
122
审稿时长
>12 weeks
期刊介绍: Computational Statistics (CompStat) is an international journal which promotes the publication of applications and methodological research in the field of Computational Statistics. The focus of papers in CompStat is on the contribution to and influence of computing on statistics and vice versa. The journal provides a forum for computer scientists, mathematicians, and statisticians in a variety of fields of statistics such as biometrics, econometrics, data analysis, graphics, simulation, algorithms, knowledge based systems, and Bayesian computing. CompStat publishes hardware, software plus package reports.
期刊最新文献
Bayes estimation of ratio of scale-like parameters for inverse Gaussian distributions and applications to classification Multivariate approaches to investigate the home and away behavior of football teams playing football matches Kendall correlations and radar charts to include goals for and goals against in soccer rankings Bayesian adaptive lasso quantile regression with non-ignorable missing responses Statistical visualisation of tidy and geospatial data in R via kernel smoothing methods in the eks package
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1