{"title":"Random forest based quantile-oriented sensitivity analysis indices estimation","authors":"Kévin Elie-Dit-Cosaque, Véronique Maume-Deschamps","doi":"10.1007/s00180-023-01450-5","DOIUrl":null,"url":null,"abstract":"<p>We propose a random forest based estimation procedure for Quantile-Oriented Sensitivity Analysis—QOSA. In order to be efficient, a cross-validation step on the leaf size of trees is required. Our full estimation procedure is tested on both simulated data and a real dataset. Our estimators use either the bootstrap samples or the original sample in the estimation. Also, they are either based on a quantile plug-in procedure (the <i>R</i>-estimators) or on a direct minimization (the <i>Q</i>-estimators). This leads to 8 different estimators which are compared on simulations. From these simulations, it seems that the estimation method based on a direct minimization is better than the one plugging the quantile. This is a significant result because the method with direct minimization requires only one sample and could therefore be preferred.</p>","PeriodicalId":55223,"journal":{"name":"Computational Statistics","volume":"54 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00180-023-01450-5","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
We propose a random forest based estimation procedure for Quantile-Oriented Sensitivity Analysis—QOSA. In order to be efficient, a cross-validation step on the leaf size of trees is required. Our full estimation procedure is tested on both simulated data and a real dataset. Our estimators use either the bootstrap samples or the original sample in the estimation. Also, they are either based on a quantile plug-in procedure (the R-estimators) or on a direct minimization (the Q-estimators). This leads to 8 different estimators which are compared on simulations. From these simulations, it seems that the estimation method based on a direct minimization is better than the one plugging the quantile. This is a significant result because the method with direct minimization requires only one sample and could therefore be preferred.
期刊介绍:
Computational Statistics (CompStat) is an international journal which promotes the publication of applications and methodological research in the field of Computational Statistics. The focus of papers in CompStat is on the contribution to and influence of computing on statistics and vice versa. The journal provides a forum for computer scientists, mathematicians, and statisticians in a variety of fields of statistics such as biometrics, econometrics, data analysis, graphics, simulation, algorithms, knowledge based systems, and Bayesian computing. CompStat publishes hardware, software plus package reports.