Bayes estimation of ratio of scale-like parameters for inverse Gaussian distributions and applications to classification

IF 1 4区 数学 Q3 STATISTICS & PROBABILITY Computational Statistics Pub Date : 2024-09-19 DOI:10.1007/s00180-024-01554-6
Ankur Chakraborty, Nabakumar Jana
{"title":"Bayes estimation of ratio of scale-like parameters for inverse Gaussian distributions and applications to classification","authors":"Ankur Chakraborty, Nabakumar Jana","doi":"10.1007/s00180-024-01554-6","DOIUrl":null,"url":null,"abstract":"<p>We consider two inverse Gaussian populations with a common mean but different scale-like parameters, where all parameters are unknown. We construct noninformative priors for the ratio of the scale-like parameters to derive matching priors of different orders. Reference priors are proposed for different groups of parameters. The Bayes estimators of the common mean and ratio of the scale-like parameters are also derived. We propose confidence intervals of the conditional error rate in classifying an observation into inverse Gaussian distributions. A generalized variable-based confidence interval and the highest posterior density credible intervals for the error rate are computed. We estimate parameters of the mixture of these inverse Gaussian distributions and obtain estimates of the expected probability of correct classification. An intensive simulation study has been carried out to compare the estimators and expected probability of correct classification. Real data-based examples are given to show the practicality and effectiveness of the estimators.</p>","PeriodicalId":55223,"journal":{"name":"Computational Statistics","volume":"50 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00180-024-01554-6","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

We consider two inverse Gaussian populations with a common mean but different scale-like parameters, where all parameters are unknown. We construct noninformative priors for the ratio of the scale-like parameters to derive matching priors of different orders. Reference priors are proposed for different groups of parameters. The Bayes estimators of the common mean and ratio of the scale-like parameters are also derived. We propose confidence intervals of the conditional error rate in classifying an observation into inverse Gaussian distributions. A generalized variable-based confidence interval and the highest posterior density credible intervals for the error rate are computed. We estimate parameters of the mixture of these inverse Gaussian distributions and obtain estimates of the expected probability of correct classification. An intensive simulation study has been carried out to compare the estimators and expected probability of correct classification. Real data-based examples are given to show the practicality and effectiveness of the estimators.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
贝叶斯估计反高斯分布的比例类参数比率及其在分类中的应用
我们考虑两个具有共同均值但不同类比参数的反高斯群体,其中所有参数都是未知的。我们为类标度参数的比率构建了非信息前验,从而推导出不同阶次的匹配前验。我们还为不同的参数组提出了参考先验。我们还推导出了类比例参数的共同均值和比率的贝叶斯估计值。我们提出了将观测分类为反高斯分布的条件误差率置信区间。我们计算了基于变量的广义置信区间和误差率的最高后验密度可信区间。我们估计了这些逆高斯分布的混合物参数,并获得了正确分类的预期概率估计值。为了比较估计值和正确分类的预期概率,我们进行了深入的模拟研究。我们还给出了基于真实数据的示例,以展示估计器的实用性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computational Statistics
Computational Statistics 数学-统计学与概率论
CiteScore
2.90
自引率
0.00%
发文量
122
审稿时长
>12 weeks
期刊介绍: Computational Statistics (CompStat) is an international journal which promotes the publication of applications and methodological research in the field of Computational Statistics. The focus of papers in CompStat is on the contribution to and influence of computing on statistics and vice versa. The journal provides a forum for computer scientists, mathematicians, and statisticians in a variety of fields of statistics such as biometrics, econometrics, data analysis, graphics, simulation, algorithms, knowledge based systems, and Bayesian computing. CompStat publishes hardware, software plus package reports.
期刊最新文献
Bayes estimation of ratio of scale-like parameters for inverse Gaussian distributions and applications to classification Multivariate approaches to investigate the home and away behavior of football teams playing football matches Kendall correlations and radar charts to include goals for and goals against in soccer rankings Bayesian adaptive lasso quantile regression with non-ignorable missing responses Statistical visualisation of tidy and geospatial data in R via kernel smoothing methods in the eks package
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1