SARS-CoV-2 lineage assignments using phylogenetic placement/UShER are superior to pangoLEARN machine learning method

IF 5.5 2区 医学 Q1 VIROLOGY Virus Evolution Pub Date : 2024-01-13 DOI:10.1093/ve/vead085
Adriano de Bernardi Schneider, Michelle Su, Angie S Hinrichs, Jade Wang, Helly Amin, John Bell, Debra A Wadford, Áine O’Toole, Emily Scher, Marc D Perry, Yatish Turakhia, Nicola De Maio, Scott Hughes, Russ Corbett-Detig
{"title":"SARS-CoV-2 lineage assignments using phylogenetic placement/UShER are superior to pangoLEARN machine learning method","authors":"Adriano de Bernardi Schneider, Michelle Su, Angie S Hinrichs, Jade Wang, Helly Amin, John Bell, Debra A Wadford, Áine O’Toole, Emily Scher, Marc D Perry, Yatish Turakhia, Nicola De Maio, Scott Hughes, Russ Corbett-Detig","doi":"10.1093/ve/vead085","DOIUrl":null,"url":null,"abstract":"With the rapid spread and evolution of SARS-CoV-2, the ability to monitor its transmission and distinguish among viral lineages is critical for pandemic response efforts. The most commonly used software for the lineage assignment of newly isolated SARS-CoV-2 genomes is pangolin, which offers two methods of assignment, pangoLEARN and pUShER. PangoLEARN rapidly assigns lineages using a machine learning algorithm, while pUShER performs a phylogenetic placement to identify the lineage corresponding to a newly sequenced genome. In a preliminary study, we observed that pangoLEARN (decision tree model), while substantially faster than pUShER, offered less consistency across different versions of pangolin v3. Here, we expand upon this analysis to include v3 and v4 of pangolin, which moved the default algorithm for lineage assignment from pangoLEARN in v3 to pUShER in v4, and perform a thorough analysis confirming that pUShER is not only more stable across versions but also more accurate. Our findings suggest that future lineage assignment algorithms for various pathogens should consider the value of phylogenetic placement.","PeriodicalId":56026,"journal":{"name":"Virus Evolution","volume":"5 1","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2024-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Virus Evolution","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/ve/vead085","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"VIROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

With the rapid spread and evolution of SARS-CoV-2, the ability to monitor its transmission and distinguish among viral lineages is critical for pandemic response efforts. The most commonly used software for the lineage assignment of newly isolated SARS-CoV-2 genomes is pangolin, which offers two methods of assignment, pangoLEARN and pUShER. PangoLEARN rapidly assigns lineages using a machine learning algorithm, while pUShER performs a phylogenetic placement to identify the lineage corresponding to a newly sequenced genome. In a preliminary study, we observed that pangoLEARN (decision tree model), while substantially faster than pUShER, offered less consistency across different versions of pangolin v3. Here, we expand upon this analysis to include v3 and v4 of pangolin, which moved the default algorithm for lineage assignment from pangoLEARN in v3 to pUShER in v4, and perform a thorough analysis confirming that pUShER is not only more stable across versions but also more accurate. Our findings suggest that future lineage assignment algorithms for various pathogens should consider the value of phylogenetic placement.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用系统进化定位/UShER 进行 SARS-CoV-2 世系分配优于 pangoLEARN 机器学习方法
随着 SARS-CoV-2 的快速传播和进化,监测其传播和区分病毒系谱的能力对于大流行病应对工作至关重要。对新分离到的 SARS-CoV-2 基因组进行系谱分配的最常用软件是 pangolin,它提供两种分配方法:pangoLEARN 和 pUShER。PangoLEARN 使用机器学习算法快速分配世系,而 pUShER 则进行系统发育排序,以确定与新测序基因组相对应的世系。在一项初步研究中,我们发现 pangoLEARN(决策树模型)虽然比 pUShER 快得多,但在不同版本的 pangolin v3 中的一致性较差。 在此,我们将这一分析扩展到 pangolin v3 和 v4,在 v4 中将世系分配的默认算法从 v3 中的 pangoLEARN 改为 pUShER,并进行了全面分析,证实 pUShER 在不同版本中不仅更稳定,而且更准确。我们的研究结果表明,未来针对各种病原体的世系分配算法应考虑系统发生学位置的价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Virus Evolution
Virus Evolution Immunology and Microbiology-Microbiology
CiteScore
10.50
自引率
5.70%
发文量
108
审稿时长
14 weeks
期刊介绍: Virus Evolution is a new Open Access journal focusing on the long-term evolution of viruses, viruses as a model system for studying evolutionary processes, viral molecular epidemiology and environmental virology. The aim of the journal is to provide a forum for original research papers, reviews, commentaries and a venue for in-depth discussion on the topics relevant to virus evolution.
期刊最新文献
Dimensionality reduction distills complex evolutionary relationships in seasonal influenza and SARS-CoV-2. Enhanced detection and molecular modeling of adaptive mutations in SARS-CoV-2 coding and non-coding regions using the c/µ test. Community-level variability in Bronx COVID-19 hospitalizations associated with differing population immunity during the second year of the pandemic. A phylogenetics and variant calling pipeline to support SARS-CoV-2 genomic epidemiology in the UK. Genomic epidemiology reveals the variation and transmission properties of SARS-CoV-2 in a single-source community outbreak.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1