Harold A Prada-Ramírez, Juan Pablo Montes-Tamara, Eduardo A Rico-Jimenez, Juan Camilo Fonseca
{"title":"Stability Study Through Water Activity Measurements for Dispensed Powdered Raw Materials","authors":"Harold A Prada-Ramírez, Juan Pablo Montes-Tamara, Eduardo A Rico-Jimenez, Juan Camilo Fonseca","doi":"10.1093/jaoacint/qsae005","DOIUrl":null,"url":null,"abstract":"Background Holding times for raw materials are relevant, since they enable us to understand the allowable time that a raw material can be kept under ideal storage conditions before the start of the manufacturing process without its quality attributes being affected. The quantification of water activity can be used as an indicator of the microbiological, physicochemical, and organoleptic stability of a specimen, since low water activity retards autohydrolysis and microbiological growth. Objective The main purpose of this investigation was to test the stability of powdered raw materials for a maximum holding time of 8 days through water activity measurements. Thus microbiological, physicochemical, and organoleptic measurements were carried out in parallel and simultaneously in order to experimentally establish a relationship between the status of the water activity of processed raw materials and the microbiological, physicochemical, and organoleptic results. Results The raw materials were stored for a maximum holding time of 8 days, in accordance with USP monographs. For all the raw materials tested, water activity measurements were performed using the dew point chilled-mirror method on days 0, 3, and 8. On days 0 and 8, microbiological, physicochemical, and organoleptic assessments were performed. It was established that under these storage conditions, the processed raw materials exhibited water activity below 0.60 during the entire holding time. However, there were statistically significant differences in water activity levels between days 0, 3, and 8 (ANOVA P < 0.05). Despite observing statistically significant differences between days, the microbiological, physicochemical, and organoleptic features were within specification at those water activity levels, below 0.60. Conclusion Water activity below 0.60 does not allow the growth of microorganisms, and the organoleptic and physicochemical features remain unperturbed. The results indicate that water activity can be used as an indicator of the microbiological load and chemical stability of the raw materials tested.","PeriodicalId":15003,"journal":{"name":"Journal of AOAC International","volume":"7 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of AOAC International","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1093/jaoacint/qsae005","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background Holding times for raw materials are relevant, since they enable us to understand the allowable time that a raw material can be kept under ideal storage conditions before the start of the manufacturing process without its quality attributes being affected. The quantification of water activity can be used as an indicator of the microbiological, physicochemical, and organoleptic stability of a specimen, since low water activity retards autohydrolysis and microbiological growth. Objective The main purpose of this investigation was to test the stability of powdered raw materials for a maximum holding time of 8 days through water activity measurements. Thus microbiological, physicochemical, and organoleptic measurements were carried out in parallel and simultaneously in order to experimentally establish a relationship between the status of the water activity of processed raw materials and the microbiological, physicochemical, and organoleptic results. Results The raw materials were stored for a maximum holding time of 8 days, in accordance with USP monographs. For all the raw materials tested, water activity measurements were performed using the dew point chilled-mirror method on days 0, 3, and 8. On days 0 and 8, microbiological, physicochemical, and organoleptic assessments were performed. It was established that under these storage conditions, the processed raw materials exhibited water activity below 0.60 during the entire holding time. However, there were statistically significant differences in water activity levels between days 0, 3, and 8 (ANOVA P < 0.05). Despite observing statistically significant differences between days, the microbiological, physicochemical, and organoleptic features were within specification at those water activity levels, below 0.60. Conclusion Water activity below 0.60 does not allow the growth of microorganisms, and the organoleptic and physicochemical features remain unperturbed. The results indicate that water activity can be used as an indicator of the microbiological load and chemical stability of the raw materials tested.
期刊介绍:
The Journal of AOAC INTERNATIONAL publishes the latest in basic and applied research in analytical sciences related to foods, drugs, agriculture, the environment, and more. The Journal is the method researchers'' forum for exchanging information and keeping informed of new technology and techniques pertinent to regulatory agencies and regulated industries.