Advancing humidity sensing and magnetocaloric properties of spinel structural CoCr2O4 nanoparticles achieved via innovative bismuth doping by combustion synthesis

IF 6.7 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Materials Today Chemistry Pub Date : 2024-01-12 DOI:10.1016/j.mtchem.2024.101907
Ming-Kang Ho, Hsin-Hao Chiu, Tsu-En Hsu, B. Chethan, Shih-Lung Yu, Chih-Yin Jheng, Chu-En Chin, Rajakar Selvam, Jagadeesha Angadi V, Chia-Liang Cheng, H. Nagabhushana, K. Manjunatha, Sheng Yun Wu
{"title":"Advancing humidity sensing and magnetocaloric properties of spinel structural CoCr2O4 nanoparticles achieved via innovative bismuth doping by combustion synthesis","authors":"Ming-Kang Ho, Hsin-Hao Chiu, Tsu-En Hsu, B. Chethan, Shih-Lung Yu, Chih-Yin Jheng, Chu-En Chin, Rajakar Selvam, Jagadeesha Angadi V, Chia-Liang Cheng, H. Nagabhushana, K. Manjunatha, Sheng Yun Wu","doi":"10.1016/j.mtchem.2024.101907","DOIUrl":null,"url":null,"abstract":"<p>This study explores the influence of Bi-doping on Co<sub>1-x</sub>Bi<sub>x</sub>Cr<sub>2</sub>O<sub>4</sub><span> (x = 0–0.2) nanoparticles<span><span> synthesized via the solution combustion method, focusing on humidity sensing and magnetocaloric effects. The investigation reveals two magnetic transitions: the </span>Curie temperature (T</span></span><sub>C</sub>) marks the paramagnetic to ferrimagnetic shift, while the spiral transition temperature (T<sub>S</sub>) indicates a spiral spin order transition. Magnetization measurements demonstrate that −ΔS<sub>M</sub><span> and relative cooling power (RCP) values vary with Bi concentration, making these nanoparticles viable for magnetic refrigeration above liquid nitrogen temperatures. Analyzing magnetic entropy variation, the modified Arrott plots and Kouvel-Fisher approach affirm second-order phase transitions. The sensing response exhibits growth alongside relative humidity (RH) and Bi concentration, culminating in an impressive ∼97.56 % sensing response for the 20 % Bi-doped sample. This heightened humidity sensing performance with increased Bi content can be attributed to synergistic effects. These results highlight the potential of 20 % Bi-doped Co</span><sub>1-x</sub>Bi<sub>x</sub>Cr<sub>2</sub>O<sub>4</sub> nanoparticles as promising contenders for enduring and practical humidity sensing applications.</p>","PeriodicalId":18353,"journal":{"name":"Materials Today Chemistry","volume":"1 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.mtchem.2024.101907","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This study explores the influence of Bi-doping on Co1-xBixCr2O4 (x = 0–0.2) nanoparticles synthesized via the solution combustion method, focusing on humidity sensing and magnetocaloric effects. The investigation reveals two magnetic transitions: the Curie temperature (TC) marks the paramagnetic to ferrimagnetic shift, while the spiral transition temperature (TS) indicates a spiral spin order transition. Magnetization measurements demonstrate that −ΔSM and relative cooling power (RCP) values vary with Bi concentration, making these nanoparticles viable for magnetic refrigeration above liquid nitrogen temperatures. Analyzing magnetic entropy variation, the modified Arrott plots and Kouvel-Fisher approach affirm second-order phase transitions. The sensing response exhibits growth alongside relative humidity (RH) and Bi concentration, culminating in an impressive ∼97.56 % sensing response for the 20 % Bi-doped sample. This heightened humidity sensing performance with increased Bi content can be attributed to synergistic effects. These results highlight the potential of 20 % Bi-doped Co1-xBixCr2O4 nanoparticles as promising contenders for enduring and practical humidity sensing applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过燃烧合成创新性掺铋技术实现尖晶石结构 CoCr2O4 纳米粒子的湿度传感和磁致性能
本研究探讨了双掺杂对通过溶液燃烧法合成的 Co1-xBixCr2O4 (x = 0-0.2) 纳米粒子的影响,重点是湿度感应和磁致效应。研究揭示了两个磁性转变:居里温度(TC)标志着顺磁性向铁磁性的转变,而螺旋转变温度(TS)则表示螺旋自旋阶跃转变。磁化测量结果表明,-ΔSM 和相对冷却功率(RCP)值随铋浓度的变化而变化,这使得这些纳米粒子可以在液氮温度以上进行磁制冷。通过分析磁熵变化,修正的阿罗特图和库维尔-费舍方法确认了二阶相变。感应响应随着相对湿度(RH)和掺铒浓度的增加而增加,掺铒 20% 的样品的感应响应达到了令人印象深刻的 97.56%。这种随着铋含量增加而提高的湿度传感性能可归因于协同效应。这些结果凸显了掺杂 20% Bi 的 Co1-xBixCr2O4 纳米粒子作为持久实用的湿度传感应用的潜在竞争者的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.90
自引率
6.80%
发文量
596
审稿时长
33 days
期刊介绍: Materials Today Chemistry is a multi-disciplinary journal dedicated to all facets of materials chemistry. This field represents one of the fastest-growing areas of science, involving the application of chemistry-based techniques to the study of materials. It encompasses materials synthesis and behavior, as well as the intricate relationships between material structure and properties at the atomic and molecular scale. Materials Today Chemistry serves as a high-impact platform for discussing research that propels the field forward through groundbreaking discoveries and innovative techniques.
期刊最新文献
Light-responsive biowaste-derived and bio-inspired textiles: Dancing between bio-friendliness and antibacterial functionality NiFe2O4 magnetic nanoparticles supported on MIL-101(Fe) as bimetallic adsorbent for boosted capture ability toward levofloxacin Recent advances in the preparation and application of graphene oxide smart response membranes The potential of collagen-based materials for wound management Development of Mg2TiO4:Mn4+ phosphors for enhanced red LED emission and forensic fingerprint analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1