Jin Young Park, Jae Yong Jung, Ganji Seeta RamaRaju, Hyun Kyoung Yang
{"title":"Development of Mg2TiO4:Mn4+ phosphors for enhanced red LED emission and forensic fingerprint analysis","authors":"Jin Young Park, Jae Yong Jung, Ganji Seeta RamaRaju, Hyun Kyoung Yang","doi":"10.1016/j.mtchem.2024.102308","DOIUrl":null,"url":null,"abstract":"The advancement in the development of inorganic phosphors marks a significant milestone in the fields of LED technology and forensic science. Herein, MgTiO:Mn (MTO:Mn) novel red-emitting phosphors are synthesized through a solvothermal method, which demonstrates a promising approach for enhancing latent fingerprint detection capabilities and improving the performance of red LEDs. The confirmation of the cubic structure post-annealing and the nano-nature as revealed by TEM analysis underpin the MTO:Mn phosphors suitability for these applications. The broad excitation spectra and the sharp red emission at 659 nm, coupled with the optimal doping concentration, showcase the MTO:Mn phosphor's efficient luminescence properties. Moreover, the calculated critical distance between Mn ions (32.906 Å) elucidates the concentration quenching mechanism, which is pivotal for optimizing the performance. The high purity of the emitted red light (97.2 %) and the precise CIE coordinates (0.5969, 0.2926) of the MTO:Mn phosphor suggest its potential for producing high-quality red LEDs. Additionally, the capability of MTO:Mn phosphors to reveal detailed and high-resolution latent fingerprints offers a more reliable and efficient method for processing and analyzing crucial evidence. These findings not only contribute to the scientific understanding of MTO:Mn phosphor materials but also pave the way for their practical application in cutting-edge technologies.","PeriodicalId":18353,"journal":{"name":"Materials Today Chemistry","volume":"30 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.mtchem.2024.102308","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The advancement in the development of inorganic phosphors marks a significant milestone in the fields of LED technology and forensic science. Herein, MgTiO:Mn (MTO:Mn) novel red-emitting phosphors are synthesized through a solvothermal method, which demonstrates a promising approach for enhancing latent fingerprint detection capabilities and improving the performance of red LEDs. The confirmation of the cubic structure post-annealing and the nano-nature as revealed by TEM analysis underpin the MTO:Mn phosphors suitability for these applications. The broad excitation spectra and the sharp red emission at 659 nm, coupled with the optimal doping concentration, showcase the MTO:Mn phosphor's efficient luminescence properties. Moreover, the calculated critical distance between Mn ions (32.906 Å) elucidates the concentration quenching mechanism, which is pivotal for optimizing the performance. The high purity of the emitted red light (97.2 %) and the precise CIE coordinates (0.5969, 0.2926) of the MTO:Mn phosphor suggest its potential for producing high-quality red LEDs. Additionally, the capability of MTO:Mn phosphors to reveal detailed and high-resolution latent fingerprints offers a more reliable and efficient method for processing and analyzing crucial evidence. These findings not only contribute to the scientific understanding of MTO:Mn phosphor materials but also pave the way for their practical application in cutting-edge technologies.
期刊介绍:
Materials Today Chemistry is a multi-disciplinary journal dedicated to all facets of materials chemistry.
This field represents one of the fastest-growing areas of science, involving the application of chemistry-based techniques to the study of materials. It encompasses materials synthesis and behavior, as well as the intricate relationships between material structure and properties at the atomic and molecular scale. Materials Today Chemistry serves as a high-impact platform for discussing research that propels the field forward through groundbreaking discoveries and innovative techniques.