Effect of MoS2 and electrolyte temperature on the electrochemical performance of NiCoS@rGO-based electrode material for energy storage, oxygen reduction reaction and electrochemical glucose sensor

IF 6.7 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Materials Today Chemistry Pub Date : 2024-01-13 DOI:10.1016/j.mtchem.2024.101909
Mabkhoot Alsaiari, Muhammad Imran, Amir Muhammad Afzal, Muhammad Waqas Iqbal, Jari S. Algethami, Farid A. Harraz
{"title":"Effect of MoS2 and electrolyte temperature on the electrochemical performance of NiCoS@rGO-based electrode material for energy storage, oxygen reduction reaction and electrochemical glucose sensor","authors":"Mabkhoot Alsaiari, Muhammad Imran, Amir Muhammad Afzal, Muhammad Waqas Iqbal, Jari S. Algethami, Farid A. Harraz","doi":"10.1016/j.mtchem.2024.101909","DOIUrl":null,"url":null,"abstract":"<p><span>Two-dimensional transition metal dichalcogenides (2D-TMDs) are essential in energy storage devices. MoS</span><sub>2</sub><span>/rGO nanostructures have improved energy storage capacity because of their layered shape, proximity effect, inherent broad surface area, and edge locations. Herein, we have synthesized NiCoS@MoS</span><sub>2</sub><span>@rGO composite electrode material for supercapattery energy storage devices and electrochemical glucose sensors via the hydrothermal method. The electrochemical performance of NiCoS, NiCoS@MoS</span><sub>2</sub> and NiCoS@MoS<sub>2</sub>@rGO were first investigated in three electrode assemblies at different electrolyte temperatures (27 °C to 50 <strong>°</strong>C). Among all the samples, NiCoS@MoS<sub>2</sub>@rGO shows the superior value of Qs (1138C/g or 1896.66 F/g) with 1 M KOH electrolyte solution at 50 <strong>°</strong>C. The asymmetric NiCoS@MoS<sub>2</sub>@rGO//AC device showed a high specific capacity (301C/g, at 1 A/g), energy and power densities of 65.44 (Wh/Kg), and 1267.18 (W/Kg), respectively. A significant value of Coulombic efficiency of 92.79 % and capacity retention of 83.42 % was acquired after 5000 galvanostatic charging/discharging (GCD) cycles. Further, the NiCoS@MoS<sub>2</sub>@rGO nanocomposite electrode material is used for oxygen reduction reaction activity. The initial potential for the oxygen reduction was 0.67 V vs. RHE, and the electrode showed high stability. Besides, the hybrid device is used as an electrochemical glucose sensor to detect glucose with a highly precise detection response. This research will open new ideas for developing more efficient TMDs sulfide-based nanocomposite materials for future energy storage systems and biomedical applications.</p>","PeriodicalId":18353,"journal":{"name":"Materials Today Chemistry","volume":"5 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2024-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.mtchem.2024.101909","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Two-dimensional transition metal dichalcogenides (2D-TMDs) are essential in energy storage devices. MoS2/rGO nanostructures have improved energy storage capacity because of their layered shape, proximity effect, inherent broad surface area, and edge locations. Herein, we have synthesized NiCoS@MoS2@rGO composite electrode material for supercapattery energy storage devices and electrochemical glucose sensors via the hydrothermal method. The electrochemical performance of NiCoS, NiCoS@MoS2 and NiCoS@MoS2@rGO were first investigated in three electrode assemblies at different electrolyte temperatures (27 °C to 50 °C). Among all the samples, NiCoS@MoS2@rGO shows the superior value of Qs (1138C/g or 1896.66 F/g) with 1 M KOH electrolyte solution at 50 °C. The asymmetric NiCoS@MoS2@rGO//AC device showed a high specific capacity (301C/g, at 1 A/g), energy and power densities of 65.44 (Wh/Kg), and 1267.18 (W/Kg), respectively. A significant value of Coulombic efficiency of 92.79 % and capacity retention of 83.42 % was acquired after 5000 galvanostatic charging/discharging (GCD) cycles. Further, the NiCoS@MoS2@rGO nanocomposite electrode material is used for oxygen reduction reaction activity. The initial potential for the oxygen reduction was 0.67 V vs. RHE, and the electrode showed high stability. Besides, the hybrid device is used as an electrochemical glucose sensor to detect glucose with a highly precise detection response. This research will open new ideas for developing more efficient TMDs sulfide-based nanocomposite materials for future energy storage systems and biomedical applications.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MoS2 和电解质温度对用于储能、氧还原反应和电化学葡萄糖传感器的 NiCoS@rGO 基电极材料电化学性能的影响
二维过渡金属二掺杂物(2D-TMDs)在储能设备中至关重要。MoS2/rGO 纳米结构因其分层形状、邻近效应、固有的宽表面积和边缘位置而具有更高的储能能力。在此,我们通过水热法合成了用于超级电池储能装置和电化学葡萄糖传感器的 NiCoS@MoS2@rGO 复合电极材料。首先研究了 NiCoS、NiCoS@MoS2 和 NiCoS@MoS2@rGO 在不同电解质温度(27 ℃ 至 50 ℃)下的电化学性能。在所有样品中,NiCoS@MoS2@rGO 在 50 °C、1 M KOH 电解质溶液中的 Qs 值最高(1138C/g 或 1896.66 F/g)。不对称 NiCoS@MoS2@rGO//AC 器件显示出很高的比容量(301C/g,1 A/g 时),能量密度和功率密度分别为 65.44 (Wh/Kg) 和 1267.18 (W/Kg)。经过 5000 次电静态充电/放电(GCD)循环后,库仑效率达到 92.79%,容量保持率达到 83.42%。此外,NiCoS@MoS2@rGO 纳米复合电极材料还用于氧还原反应活动。氧还原反应的初始电位为 0.67 V(相对于 RHE),电极表现出很高的稳定性。此外,该混合装置还可用作电化学葡萄糖传感器来检测葡萄糖,并具有高精度的检测响应。这项研究将为开发更高效的 TMDs 硫化物基纳米复合材料开辟新思路,并应用于未来的储能系统和生物医学领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.90
自引率
6.80%
发文量
596
审稿时长
33 days
期刊介绍: Materials Today Chemistry is a multi-disciplinary journal dedicated to all facets of materials chemistry. This field represents one of the fastest-growing areas of science, involving the application of chemistry-based techniques to the study of materials. It encompasses materials synthesis and behavior, as well as the intricate relationships between material structure and properties at the atomic and molecular scale. Materials Today Chemistry serves as a high-impact platform for discussing research that propels the field forward through groundbreaking discoveries and innovative techniques.
期刊最新文献
Light-responsive biowaste-derived and bio-inspired textiles: Dancing between bio-friendliness and antibacterial functionality NiFe2O4 magnetic nanoparticles supported on MIL-101(Fe) as bimetallic adsorbent for boosted capture ability toward levofloxacin Recent advances in the preparation and application of graphene oxide smart response membranes The potential of collagen-based materials for wound management Development of Mg2TiO4:Mn4+ phosphors for enhanced red LED emission and forensic fingerprint analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1