SiO2/Co encapsulated in N-doped carbon nanofibers as anode materials for lithium-ion batteries

IF 6.7 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Materials Today Chemistry Pub Date : 2024-01-14 DOI:10.1016/j.mtchem.2024.101919
Qi Zhong, Xiao Yang, Zhengrui Miao, Liequan Liu, Yuqing Xu, YiXuan Meng, Zhenyu Yang, Ji Yu
{"title":"SiO2/Co encapsulated in N-doped carbon nanofibers as anode materials for lithium-ion batteries","authors":"Qi Zhong, Xiao Yang, Zhengrui Miao, Liequan Liu, Yuqing Xu, YiXuan Meng, Zhenyu Yang, Ji Yu","doi":"10.1016/j.mtchem.2024.101919","DOIUrl":null,"url":null,"abstract":"<p><span>To address the issues of poor electrical conductivity and volume expansion of SiO</span><sub>2</sub>, the composite SiO<sub>2</sub><span><span>/Co encapsulated in N-doped Carbon nanofibers is prepared in situ using an electrostatic spinning method followed a high-temperature treatment. Co </span>nanoparticles exist as an elementary substance in the composite and improve the electrical conductivity of the composite, resulting in enhanced electrochemical performance. In addition, the N-doped carbon nanofibers wrap around the outside of SiO</span><sub>2</sub>/Co to form a conductive network, which improves the conductivity of the composite and alleviates the volumetric effects during the charge-discharge process. As expected, the prepared SiO<sub>2</sub>/Co@N-doped carbon nanofibers exhibit excellent rate performance, which can provide a very high discharge specific capacity of 1276 mA h g<sup>−1</sup> and 493 mA h g<sup>−1</sup> at current densities of 0.1 A g<sup>−1</sup> and 2 A g<sup>−1</sup>, respectively. The composite also has a long cycle life, with a reversible discharge capacity of 659 mA h g<sup>−1</sup> at 0.5 A g<sup>−1</sup> after 400 cycles, and 552 mA h g<sup>−1</sup> at 1 A g<sup>−1</sup> after 1000 cycles. Furthermore, a full-cell LiFePO<sub>4</sub>||SiO<sub>2</sub>|Co@N-doped carbon nanofibers can release a reversible capacity of 119 mA h g<sup>−1</sup> at 0.1C.</p>","PeriodicalId":18353,"journal":{"name":"Materials Today Chemistry","volume":"104 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2024-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.mtchem.2024.101919","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

To address the issues of poor electrical conductivity and volume expansion of SiO2, the composite SiO2/Co encapsulated in N-doped Carbon nanofibers is prepared in situ using an electrostatic spinning method followed a high-temperature treatment. Co nanoparticles exist as an elementary substance in the composite and improve the electrical conductivity of the composite, resulting in enhanced electrochemical performance. In addition, the N-doped carbon nanofibers wrap around the outside of SiO2/Co to form a conductive network, which improves the conductivity of the composite and alleviates the volumetric effects during the charge-discharge process. As expected, the prepared SiO2/Co@N-doped carbon nanofibers exhibit excellent rate performance, which can provide a very high discharge specific capacity of 1276 mA h g−1 and 493 mA h g−1 at current densities of 0.1 A g−1 and 2 A g−1, respectively. The composite also has a long cycle life, with a reversible discharge capacity of 659 mA h g−1 at 0.5 A g−1 after 400 cycles, and 552 mA h g−1 at 1 A g−1 after 1000 cycles. Furthermore, a full-cell LiFePO4||SiO2|Co@N-doped carbon nanofibers can release a reversible capacity of 119 mA h g−1 at 0.1C.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
封装在掺杂 N 的碳纳米纤维中的 SiO2/Co 作为锂离子电池的负极材料
为了解决二氧化硅导电性差和体积膨胀的问题,我们采用静电纺丝法在高温处理后就地制备了包裹在掺杂 N 的碳纳米纤维中的二氧化硅/钴复合材料。钴纳米粒子作为一种基本物质存在于复合材料中,可改善复合材料的导电性,从而提高电化学性能。此外,掺杂 N 的纳米碳纤维包裹在 SiO2/Co 外侧形成导电网络,从而提高了复合材料的导电性,并减轻了充放电过程中的体积效应。正如预期的那样,制备的 SiO2/Co@N 掺杂碳纳米纤维表现出优异的速率性能,在电流密度为 0.1 A g-1 和 2 A g-1 时,可分别提供 1276 mA h g-1 和 493 mA h g-1 的极高放电比容量。这种复合材料还具有较长的循环寿命,在 0.5 A g-1 条件下,循环 400 次后的可逆放电容量为 659 mA h g-1;在 1 A g-1 条件下,循环 1000 次后的可逆放电容量为 552 mA h g-1。此外,掺杂碳纳米纤维的全电池磷酸铁锂(LiFePO4||SiO2|Co@N)在 0.1C 时可释放出 119 mA h g-1 的可逆容量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.90
自引率
6.80%
发文量
596
审稿时长
33 days
期刊介绍: Materials Today Chemistry is a multi-disciplinary journal dedicated to all facets of materials chemistry. This field represents one of the fastest-growing areas of science, involving the application of chemistry-based techniques to the study of materials. It encompasses materials synthesis and behavior, as well as the intricate relationships between material structure and properties at the atomic and molecular scale. Materials Today Chemistry serves as a high-impact platform for discussing research that propels the field forward through groundbreaking discoveries and innovative techniques.
期刊最新文献
Light-responsive biowaste-derived and bio-inspired textiles: Dancing between bio-friendliness and antibacterial functionality NiFe2O4 magnetic nanoparticles supported on MIL-101(Fe) as bimetallic adsorbent for boosted capture ability toward levofloxacin Recent advances in the preparation and application of graphene oxide smart response membranes The potential of collagen-based materials for wound management Development of Mg2TiO4:Mn4+ phosphors for enhanced red LED emission and forensic fingerprint analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1