Anna Yu Likhacheva, Sofija Miloš, Alexandr V. Romanenko, Sergey V. Goryainov, Anna I. Semerikova, Sergey V. Rashchenko, Ronald Miletich, Anton Shatsky
{"title":"High-pressure behavior and stability of synthetic buetschliite K2Ca(CO3)2 up to 19 GPa and 300°C","authors":"Anna Yu Likhacheva, Sofija Miloš, Alexandr V. Romanenko, Sergey V. Goryainov, Anna I. Semerikova, Sergey V. Rashchenko, Ronald Miletich, Anton Shatsky","doi":"10.1002/jrs.6654","DOIUrl":null,"url":null,"abstract":"<p>The occurrence of buetschliite, K<sub>2</sub>Ca(CO<sub>3</sub>)<sub>2</sub>, as inclusions in mantle minerals, is considered as one of the keys to understanding phase relationships of dense carbonates and outlines the potential role of potassium carbonates in the Earth's deep carbon cycle. Within this scope, the high-pressure behavior of synthetic buetschliite is characterized by in situ Raman spectroscopy up to 19 GPa and 300°C. Up to 6 GPa, the compression is regular, then the splitting of some of the lattice and internal modes defines the transition to a low-symmetry phase, in analogy to that observed previously in K<sub>2</sub>Mg(CO<sub>3</sub>)<sub>2</sub>. The temperature rise to 300°C shifts the transition pressure from ~6 to ~8 GPa, but on the whole, it does not change the high-pressure behavior of K<sub>2</sub>Ca(CO<sub>3</sub>)<sub>2</sub>. The observed pressure-induced spectral changes are fully reversible at room and elevated temperature. The findings show the expansion of buetschliite baric stability with temperature, which confirms its importance as a constituent of carbonate inclusions in deep minerals.</p>","PeriodicalId":16926,"journal":{"name":"Journal of Raman Spectroscopy","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Raman Spectroscopy","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jrs.6654","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"SPECTROSCOPY","Score":null,"Total":0}
引用次数: 0
Abstract
The occurrence of buetschliite, K2Ca(CO3)2, as inclusions in mantle minerals, is considered as one of the keys to understanding phase relationships of dense carbonates and outlines the potential role of potassium carbonates in the Earth's deep carbon cycle. Within this scope, the high-pressure behavior of synthetic buetschliite is characterized by in situ Raman spectroscopy up to 19 GPa and 300°C. Up to 6 GPa, the compression is regular, then the splitting of some of the lattice and internal modes defines the transition to a low-symmetry phase, in analogy to that observed previously in K2Mg(CO3)2. The temperature rise to 300°C shifts the transition pressure from ~6 to ~8 GPa, but on the whole, it does not change the high-pressure behavior of K2Ca(CO3)2. The observed pressure-induced spectral changes are fully reversible at room and elevated temperature. The findings show the expansion of buetschliite baric stability with temperature, which confirms its importance as a constituent of carbonate inclusions in deep minerals.
期刊介绍:
The Journal of Raman Spectroscopy is an international journal dedicated to the publication of original research at the cutting edge of all areas of science and technology related to Raman spectroscopy. The journal seeks to be the central forum for documenting the evolution of the broadly-defined field of Raman spectroscopy that includes an increasing number of rapidly developing techniques and an ever-widening array of interdisciplinary applications.
Such topics include time-resolved, coherent and non-linear Raman spectroscopies, nanostructure-based surface-enhanced and tip-enhanced Raman spectroscopies of molecules, resonance Raman to investigate the structure-function relationships and dynamics of biological molecules, linear and nonlinear Raman imaging and microscopy, biomedical applications of Raman, theoretical formalism and advances in quantum computational methodology of all forms of Raman scattering, Raman spectroscopy in archaeology and art, advances in remote Raman sensing and industrial applications, and Raman optical activity of all classes of chiral molecules.