Analysis of endoglucanases production using metatranscriptomics and proteomics approach.

3区 生物学 Q1 Biochemistry, Genetics and Molecular Biology Advances in protein chemistry and structural biology Pub Date : 2024-01-01 Epub Date: 2023-06-14 DOI:10.1016/bs.apcsb.2023.04.005
Mandeep Dixit, Pratyoosh Shukla
{"title":"Analysis of endoglucanases production using metatranscriptomics and proteomics approach.","authors":"Mandeep Dixit, Pratyoosh Shukla","doi":"10.1016/bs.apcsb.2023.04.005","DOIUrl":null,"url":null,"abstract":"<p><p>The cellulases are among the most used enzyme in industries for various purposes. They add up to the green economy perspective and cost-effective production of enterprises. Biorefineries, paper industries, and textile industries are foremost in their usage. The production of endoglucanases from microorganisms is a valuable resource and can be exploited with the help of biotechnology. The present review provides some insight into the uses of endoglucanases in different industries and the potent fungal source of these enzymes. The advances in the enzyme technology has helped towards understanding some pathways to increase the production of industrial enzymes from microorganisms. The proteomics analysis and systems biology tools also help to identify these pathways for the enhanced production of such enzymes. This review deciphers the use of proteomics tools to analyze the potent microorganisms and identify suitable culture conditions to increase the output of endoglucanases. The review also includes the role of quantitative proteomics which is a powerful technique to get results faster and more timely. The role of metatranscriptomic approaches are also described which are helpful in the enzyme engineering for their efficient use under industrial conditions. Conclusively, this review helps to understand the challenges faced in the industrial use of endoglucanases and their further improvement.</p>","PeriodicalId":7376,"journal":{"name":"Advances in protein chemistry and structural biology","volume":"138 ","pages":"211-231"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in protein chemistry and structural biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/bs.apcsb.2023.04.005","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/6/14 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

Abstract

The cellulases are among the most used enzyme in industries for various purposes. They add up to the green economy perspective and cost-effective production of enterprises. Biorefineries, paper industries, and textile industries are foremost in their usage. The production of endoglucanases from microorganisms is a valuable resource and can be exploited with the help of biotechnology. The present review provides some insight into the uses of endoglucanases in different industries and the potent fungal source of these enzymes. The advances in the enzyme technology has helped towards understanding some pathways to increase the production of industrial enzymes from microorganisms. The proteomics analysis and systems biology tools also help to identify these pathways for the enhanced production of such enzymes. This review deciphers the use of proteomics tools to analyze the potent microorganisms and identify suitable culture conditions to increase the output of endoglucanases. The review also includes the role of quantitative proteomics which is a powerful technique to get results faster and more timely. The role of metatranscriptomic approaches are also described which are helpful in the enzyme engineering for their efficient use under industrial conditions. Conclusively, this review helps to understand the challenges faced in the industrial use of endoglucanases and their further improvement.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用元转录组学和蛋白质组学方法分析内切葡聚糖酶的生产。
纤维素酶是工业中用途最广的酶之一。它们从绿色经济的角度出发,为企业的生产增加了成本效益。生物精炼厂、造纸业和纺织业是使用纤维素酶最多的行业。从微生物中产生的内切葡聚糖酶是一种宝贵的资源,可以在生物技术的帮助下加以利用。本综述介绍了内切葡聚糖酶在不同行业中的用途以及这些酶的有效真菌来源。酶技术的进步有助于了解从微生物中提高工业酶产量的一些途径。蛋白质组学分析和系统生物学工具也有助于确定这些途径,以提高此类酶的产量。本综述解读了如何利用蛋白质组学工具分析强效微生物,并确定合适的培养条件以提高内切葡聚糖酶的产量。本综述还包括定量蛋白质组学的作用,这是一种能更快、更及时地获得结果的强大技术。此外,还介绍了元转录组学方法的作用,这有助于酶工程在工业条件下的有效利用。总之,本综述有助于了解内切葡聚糖酶在工业应用中面临的挑战及其进一步改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advances in protein chemistry and structural biology
Advances in protein chemistry and structural biology BIOCHEMISTRY & MOLECULAR BIOLOGY-
CiteScore
7.40
自引率
0.00%
发文量
66
审稿时长
>12 weeks
期刊介绍: Published continuously since 1944, The Advances in Protein Chemistry and Structural Biology series has been the essential resource for protein chemists. Each volume brings forth new information about protocols and analysis of proteins. Each thematically organized volume is guest edited by leading experts in a broad range of protein-related topics.
期刊最新文献
In silico network pharmacology study on Glycyrrhiza glabra: Analyzing the immune-boosting phytochemical properties of Siddha medicinal plant against COVID-19. A computational pipeline elucidating functions of conserved hypothetical Trypanosoma cruzi proteins based on public proteomic data. Analysis of endoglucanases production using metatranscriptomics and proteomics approach. Application of functional proteomics in understanding RNA virus-mediated infection. Functional proteomics based on protein microarray technology for biomedical research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1