Yang Zhang, Jiangming Xu, Junrui Liang, Jun Ye, Sicheng Li, Xiaoya Ma, Zhiyong Pan, Jinyong Leng, Pu Zhou
{"title":"High power tunable Raman fiber laser at 1.2 μm waveband.","authors":"Yang Zhang, Jiangming Xu, Junrui Liang, Jun Ye, Sicheng Li, Xiaoya Ma, Zhiyong Pan, Jinyong Leng, Pu Zhou","doi":"10.1007/s12200-024-00105-7","DOIUrl":null,"url":null,"abstract":"<p><p>Development of a high power fiber laser at special waveband, which is difficult to achieve by conventional rare-earth-doped fibers, is a significant challenge. One of the most common methods for achieving lasing at special wavelength is Raman conversion. Phosphorus-doped fiber (PDF), due to the phosphorus-related large frequency shift Raman peak at 40 THz, is a great choice for large frequency shift Raman conversion. Here, by adopting 150 m large mode area triple-clad PDF as Raman gain medium, and a novel wavelength-selective feedback mechanism to suppress the silica-related Raman emission, we build a high power cladding-pumped Raman fiber laser at 1.2 μm waveband. A Raman signal with power up to 735.8 W at 1252.7 nm is obtained. To the best of our knowledge, this is the highest output power ever reported for fiber lasers at 1.2 μm waveband. Moreover, by tuning the wavelength of the pump source, a tunable Raman output of more than 450 W over a wavelength range of 1240.6-1252.7 nm is demonstrated. This work proves PDF's advantage in high power large frequency shift Raman conversion with a cladding pump scheme, thus providing a good solution for a high power laser source at special waveband.</p>","PeriodicalId":12685,"journal":{"name":"Frontiers of Optoelectronics","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2024-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10789707/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Optoelectronics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12200-024-00105-7","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Development of a high power fiber laser at special waveband, which is difficult to achieve by conventional rare-earth-doped fibers, is a significant challenge. One of the most common methods for achieving lasing at special wavelength is Raman conversion. Phosphorus-doped fiber (PDF), due to the phosphorus-related large frequency shift Raman peak at 40 THz, is a great choice for large frequency shift Raman conversion. Here, by adopting 150 m large mode area triple-clad PDF as Raman gain medium, and a novel wavelength-selective feedback mechanism to suppress the silica-related Raman emission, we build a high power cladding-pumped Raman fiber laser at 1.2 μm waveband. A Raman signal with power up to 735.8 W at 1252.7 nm is obtained. To the best of our knowledge, this is the highest output power ever reported for fiber lasers at 1.2 μm waveband. Moreover, by tuning the wavelength of the pump source, a tunable Raman output of more than 450 W over a wavelength range of 1240.6-1252.7 nm is demonstrated. This work proves PDF's advantage in high power large frequency shift Raman conversion with a cladding pump scheme, thus providing a good solution for a high power laser source at special waveband.
期刊介绍:
Frontiers of Optoelectronics seeks to provide a multidisciplinary forum for a broad mix of peer-reviewed academic papers in order to promote rapid communication and exchange between researchers in China and abroad. It introduces and reflects significant achievements being made in the field of photonics or optoelectronics. The topics include, but are not limited to, semiconductor optoelectronics, nano-photonics, information photonics, energy photonics, ultrafast photonics, biomedical photonics, nonlinear photonics, fiber optics, laser and terahertz technology and intelligent photonics. The journal publishes reviews, research articles, letters, comments, special issues and so on.
Frontiers of Optoelectronics especially encourages papers from new emerging and multidisciplinary areas, papers reflecting the international trends of research and development, and on special topics reporting progress made in the field of optoelectronics. All published papers will reflect the original thoughts of researchers and practitioners on basic theories, design and new technology in optoelectronics.
Frontiers of Optoelectronics is strictly peer-reviewed and only accepts original submissions in English. It is a fully OA journal and the APCs are covered by Higher Education Press and Huazhong University of Science and Technology.
● Presents the latest developments in optoelectronics and optics
● Emphasizes the latest developments of new optoelectronic materials, devices, systems and applications
● Covers industrial photonics, information photonics, biomedical photonics, energy photonics, laser and terahertz technology, and more