{"title":"Serotype-specific quantification of residual free polysaccharide in multivalent pneumococcal conjugate vaccines.","authors":"Milica Grozdanovic, Rachelle Samuel, Brendan Grau, Frances Ansbro","doi":"10.1007/s10719-023-10143-6","DOIUrl":null,"url":null,"abstract":"<p><p>The Streptococcus pneumoniae bacteria has over 100 known serotypes that display a continuous change in prevalence by patients' age and geographical location and therefore necessitate continued efforts toward development of new vaccines with broader protection. Glycoconjugate vaccines have been instrumental in reducing global morbidity and mortality caused by Streptococcus pneumoniae infections. In these vaccines, the bacterial polysaccharide is conjugated to a carrier protein to enhance immunogenicity. To ensure well defined immunogenicity and stability of conjugated vaccines, reliable quantification of non-conjugated (free) polysaccharide is a critical, albeit challenging step during vaccine clinical dosing, release and stability monitoring. Multivalent preparations of Cross-reactive material 197 (CRM197)- conjugated pneumococcal polysaccharide materials often contain only nanogram levels of each individual free polysaccharide at final container concentrations. We have developed a novel method for the separation of free polysaccharides from conjugated material that requires no sample derivatization, employing instead an approach of quantitative immunoprecipitation of CRM197 with 3 different monoclonal antibodies and magnetic beads. A mix of antibodies against both linear and conformational epitopes enables successful removal of conjugates regardless of the protein folded state. The remaining free polysaccharide is subsequently measured in a serotype-specific ELISA.</p>","PeriodicalId":12762,"journal":{"name":"Glycoconjugate Journal","volume":" ","pages":"47-55"},"PeriodicalIF":2.7000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Glycoconjugate Journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10719-023-10143-6","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/15 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The Streptococcus pneumoniae bacteria has over 100 known serotypes that display a continuous change in prevalence by patients' age and geographical location and therefore necessitate continued efforts toward development of new vaccines with broader protection. Glycoconjugate vaccines have been instrumental in reducing global morbidity and mortality caused by Streptococcus pneumoniae infections. In these vaccines, the bacterial polysaccharide is conjugated to a carrier protein to enhance immunogenicity. To ensure well defined immunogenicity and stability of conjugated vaccines, reliable quantification of non-conjugated (free) polysaccharide is a critical, albeit challenging step during vaccine clinical dosing, release and stability monitoring. Multivalent preparations of Cross-reactive material 197 (CRM197)- conjugated pneumococcal polysaccharide materials often contain only nanogram levels of each individual free polysaccharide at final container concentrations. We have developed a novel method for the separation of free polysaccharides from conjugated material that requires no sample derivatization, employing instead an approach of quantitative immunoprecipitation of CRM197 with 3 different monoclonal antibodies and magnetic beads. A mix of antibodies against both linear and conformational epitopes enables successful removal of conjugates regardless of the protein folded state. The remaining free polysaccharide is subsequently measured in a serotype-specific ELISA.
期刊介绍:
Glycoconjugate Journal publishes articles and reviews on all areas concerned with:
function, composition, structure, biosynthesis, degradation, interactions, recognition and chemo-enzymatic synthesis of glycoconjugates (glycoproteins, glycolipids, oligosaccharides, polysaccharides and proteoglycans), biochemistry, molecular biology, biotechnology, immunology and cell biology of glycoconjugates, aspects related to disease processes (immunological, inflammatory, arthritic infections, metabolic disorders, malignancy, neurological disorders), structural and functional glycomics, glycoimmunology, glycovaccines, organic synthesis of glycoconjugates and the development of methodologies if biologically relevant, glycosylation changes in disease if focused on either the discovery of a novel disease marker or the improved understanding of some basic pathological mechanism, articles on the effects of toxicological agents (alcohol, tobacco, narcotics, environmental agents) on glycosylation, and the use of glycotherapeutics.
Glycoconjugate Journal is the official journal of the International Glycoconjugate Organization, which is responsible for organizing the biennial International Symposia on Glycoconjugates.