Juyeon Hwang, Haruaki Yanagisawa, Keira C. Davis, Emily L. Hunter, Laura A. Fox, Ariana R. Jimenez, Reagan E. Goodwin, Sarah A. Gordon, Courtney D. E. Stuart, Raqual Bower, Mary E. Porter, Susan K. Dutcher, Winfield S. Sale, Karl F. Lechtreck, Lea M. Alford
{"title":"Assembly of FAP93 at the proximal axoneme in Chlamydomonas cilia","authors":"Juyeon Hwang, Haruaki Yanagisawa, Keira C. Davis, Emily L. Hunter, Laura A. Fox, Ariana R. Jimenez, Reagan E. Goodwin, Sarah A. Gordon, Courtney D. E. Stuart, Raqual Bower, Mary E. Porter, Susan K. Dutcher, Winfield S. Sale, Karl F. Lechtreck, Lea M. Alford","doi":"10.1002/cm.21818","DOIUrl":null,"url":null,"abstract":"<p>To identify proteins specific to the proximal ciliary axoneme, we used iTRAQ to compare short (~2 μm) and full-length (~11 μm) axonemes of <i>Chlamydomonas</i>. Known components of the proximal axoneme such as minor dynein heavy chains and LF5 kinase as well as the ciliary tip proteins FAP256 (CEP104) and EB1 were enriched in short axonemes whereas proteins present along the length of the axoneme were of similar abundance in both samples. The iTRAQ analysis revealed that FAP93, a protein of unknown function, and protein phosphatase 2A (PP2A) are enriched in the short axonemes. Consistently, immunoblots show enrichment of FAP93 and PP2A in short axonemes and immunofluorescence confirms the localization of FAP93 and enrichment of PP2A at the proximal axoneme. Ciliary regeneration reveals that FAP93 assembles continuously but more slowly than other axonemal structures and terminates at 1.03 μm in steady-state axonemes. The length of FAP93 assembly correlates with ciliary length, demonstrating ciliary length-dependent assembly of FAP93. Dikaryon rescue experiments show that FAP93 can assemble independently of IFT transport. In addition, FRAP analysis of GFP-tagged FAP93 demonstrates that FAP93 is stably anchored in the axoneme. FAP93 may function as a scaffold for assembly of other specific proteins at the proximal axoneme.</p>","PeriodicalId":55186,"journal":{"name":"Cytoskeleton","volume":"81 11","pages":"539-555"},"PeriodicalIF":2.4000,"publicationDate":"2024-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cytoskeleton","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cm.21818","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
To identify proteins specific to the proximal ciliary axoneme, we used iTRAQ to compare short (~2 μm) and full-length (~11 μm) axonemes of Chlamydomonas. Known components of the proximal axoneme such as minor dynein heavy chains and LF5 kinase as well as the ciliary tip proteins FAP256 (CEP104) and EB1 were enriched in short axonemes whereas proteins present along the length of the axoneme were of similar abundance in both samples. The iTRAQ analysis revealed that FAP93, a protein of unknown function, and protein phosphatase 2A (PP2A) are enriched in the short axonemes. Consistently, immunoblots show enrichment of FAP93 and PP2A in short axonemes and immunofluorescence confirms the localization of FAP93 and enrichment of PP2A at the proximal axoneme. Ciliary regeneration reveals that FAP93 assembles continuously but more slowly than other axonemal structures and terminates at 1.03 μm in steady-state axonemes. The length of FAP93 assembly correlates with ciliary length, demonstrating ciliary length-dependent assembly of FAP93. Dikaryon rescue experiments show that FAP93 can assemble independently of IFT transport. In addition, FRAP analysis of GFP-tagged FAP93 demonstrates that FAP93 is stably anchored in the axoneme. FAP93 may function as a scaffold for assembly of other specific proteins at the proximal axoneme.
期刊介绍:
Cytoskeleton focuses on all aspects of cytoskeletal research in healthy and diseased states, spanning genetic and cell biological observations, biochemical, biophysical and structural studies, mathematical modeling and theory. This includes, but is certainly not limited to, classic polymer systems of eukaryotic cells and their structural sites of attachment on membranes and organelles, as well as the bacterial cytoskeleton, the nucleoskeleton, and uncoventional polymer systems with structural/organizational roles. Cytoskeleton is published in 12 issues annually, and special issues will be dedicated to especially-active or newly-emerging areas of cytoskeletal research.