{"title":"Deterministic Modeling for Radiation Attenuation-integrated Radon Transform in Emission Computed Tomography: Algorithm, Curve Fitting Analysis, and Introduction of Attenuation Hadamard Matrix.","authors":"Mohsen Qutbi","doi":"10.4103/jmp.jmp_94_23","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>The purpose of the study is to propose an algorithm to implement and visualize radiation attenuation-integrated Radon transform based on Beer-Lambert law during emission computed tomography simulation using a deterministic model and also to perform image analysis on resulting images.</p><p><strong>Methods: </strong>Two types of phantoms are designed: plain-disk phantom and patterned-disk phantom. The large disk is filled with an activity of 5 units and the smaller disks have 10 units of activity of <sup>99m</sup>Tc isotope as an emission map. Three transmission maps for patterned-disk phantom are created with uniform linear attenuation coefficient. Phantoms are scanned with 360° and 180° acquisition arcs. Then, using the algorithm designed, the exponential Radon transform is implemented. After that, the projections are back-projected and filtered to generate tomographic slices. Finally, all slices are analyzed using profile plotting and curve fitting. Moreover, an attenuation Hadamard matrix is provided to facilitate attenuation modeling.</p><p><strong>Results: </strong>The uniform intensity of activity in the phantoms is converted to a disk with progressively decreasing intensity from the periphery to the center in the tomographic slices. Similarly, the circles positioned more centrally appear less intense than those positioned in the periphery, despite all circles having equal activity. When the phantom is scanned in 180° arc, the circles closest to the camera are visualized more intensely. The profile curves of the slices generated by exponential Radon transformation are depicted as U-shaped in profile plotting and are fitted to a bi-exponential function with a near-perfect precision.</p><p><strong>Conclusions: </strong>The incorporation of radiation attenuation results in the development of more realistic models for quantification purposes.</p>","PeriodicalId":51719,"journal":{"name":"Journal of Medical Physics","volume":"48 4","pages":"384-391"},"PeriodicalIF":0.7000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10783194/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4103/jmp.jmp_94_23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/5 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: The purpose of the study is to propose an algorithm to implement and visualize radiation attenuation-integrated Radon transform based on Beer-Lambert law during emission computed tomography simulation using a deterministic model and also to perform image analysis on resulting images.
Methods: Two types of phantoms are designed: plain-disk phantom and patterned-disk phantom. The large disk is filled with an activity of 5 units and the smaller disks have 10 units of activity of 99mTc isotope as an emission map. Three transmission maps for patterned-disk phantom are created with uniform linear attenuation coefficient. Phantoms are scanned with 360° and 180° acquisition arcs. Then, using the algorithm designed, the exponential Radon transform is implemented. After that, the projections are back-projected and filtered to generate tomographic slices. Finally, all slices are analyzed using profile plotting and curve fitting. Moreover, an attenuation Hadamard matrix is provided to facilitate attenuation modeling.
Results: The uniform intensity of activity in the phantoms is converted to a disk with progressively decreasing intensity from the periphery to the center in the tomographic slices. Similarly, the circles positioned more centrally appear less intense than those positioned in the periphery, despite all circles having equal activity. When the phantom is scanned in 180° arc, the circles closest to the camera are visualized more intensely. The profile curves of the slices generated by exponential Radon transformation are depicted as U-shaped in profile plotting and are fitted to a bi-exponential function with a near-perfect precision.
Conclusions: The incorporation of radiation attenuation results in the development of more realistic models for quantification purposes.
期刊介绍:
JOURNAL OF MEDICAL PHYSICS is the official journal of Association of Medical Physicists of India (AMPI). The association has been bringing out a quarterly publication since 1976. Till the end of 1993, it was known as Medical Physics Bulletin, which then became Journal of Medical Physics. The main objective of the Journal is to serve as a vehicle of communication to highlight all aspects of the practice of medical radiation physics. The areas covered include all aspects of the application of radiation physics to biological sciences, radiotherapy, radiodiagnosis, nuclear medicine, dosimetry and radiation protection. Papers / manuscripts dealing with the aspects of physics related to cancer therapy / radiobiology also fall within the scope of the journal.