{"title":"Material Properties of Fiber Bundles of the Superficial Medial Collateral Ligament of the Knee Joint.","authors":"Wentao Chen, Qing Zhou, Jisi Tang","doi":"10.1115/1.4064476","DOIUrl":null,"url":null,"abstract":"<p><p>The superficial medial collateral ligament (sMCL) of the human knee joint has functionally separate anterior and posterior fiber bundles. The two bundles are alternatively loaded as the knee flexion angle changes during walking. To date, the two bundles are usually not distinguished in knee ligament simulations because there has been little information about their material properties. In this study, we conducted quasi-static tensile tests on the sMCL of matured porcine stifle joints and obtained the material properties of the anterior bundle (AB), posterior bundle (PB), and whole ligament (WL). AB and PB have similar failure stress but different threshold strain, modulus, and failure strain. As a result, we recommend assigning different material properties (i.e., modulus and failure strain) to the two fiber bundles to realize biofidelic ligament responses in human body models. However, it is often inconvenient to perform tensile tests on AB and PB. Hence, we proposed a microstructural model-based approach to predict the material properties of AB and PB from the test results of WL. Such obtained modulus values of AB and PB had an error of 2% and 0.3%, respectively, compared with those measured from the tests. This approach can reduce the experimental cost for acquiring the needed mechanical property data for simulations.</p>","PeriodicalId":54871,"journal":{"name":"Journal of Biomechanical Engineering-Transactions of the Asme","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomechanical Engineering-Transactions of the Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4064476","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The superficial medial collateral ligament (sMCL) of the human knee joint has functionally separate anterior and posterior fiber bundles. The two bundles are alternatively loaded as the knee flexion angle changes during walking. To date, the two bundles are usually not distinguished in knee ligament simulations because there has been little information about their material properties. In this study, we conducted quasi-static tensile tests on the sMCL of matured porcine stifle joints and obtained the material properties of the anterior bundle (AB), posterior bundle (PB), and whole ligament (WL). AB and PB have similar failure stress but different threshold strain, modulus, and failure strain. As a result, we recommend assigning different material properties (i.e., modulus and failure strain) to the two fiber bundles to realize biofidelic ligament responses in human body models. However, it is often inconvenient to perform tensile tests on AB and PB. Hence, we proposed a microstructural model-based approach to predict the material properties of AB and PB from the test results of WL. Such obtained modulus values of AB and PB had an error of 2% and 0.3%, respectively, compared with those measured from the tests. This approach can reduce the experimental cost for acquiring the needed mechanical property data for simulations.
期刊介绍:
Artificial Organs and Prostheses; Bioinstrumentation and Measurements; Bioheat Transfer; Biomaterials; Biomechanics; Bioprocess Engineering; Cellular Mechanics; Design and Control of Biological Systems; Physiological Systems.