Quantitative assessment of corneal elasticity distribution after FS-LASIK using optical coherence elastography

IF 2 3区 物理与天体物理 Q3 BIOCHEMICAL RESEARCH METHODS Journal of Biophotonics Pub Date : 2024-01-14 DOI:10.1002/jbio.202300441
Xiao Han, Yubao Zhang, Gang Shi, Guo Liu, Sizhu Ai, Yidi Wang, Qin Zhang, Xingdao He
{"title":"Quantitative assessment of corneal elasticity distribution after FS-LASIK using optical coherence elastography","authors":"Xiao Han,&nbsp;Yubao Zhang,&nbsp;Gang Shi,&nbsp;Guo Liu,&nbsp;Sizhu Ai,&nbsp;Yidi Wang,&nbsp;Qin Zhang,&nbsp;Xingdao He","doi":"10.1002/jbio.202300441","DOIUrl":null,"url":null,"abstract":"<p>Quantifying corneal elasticity after femtosecond laser-assisted in situ keratomileusis (FS-LASIK) procedure plays an important role in improving surgical safety and quality, since some latent complications may occur ascribing to changes in postoperative corneal biomechanics. Nevertheless, it is suggested that current research has been severely constrained due to the lack of an accurate quantification method to obtain postoperative corneal elasticity distribution. In this paper, an acoustic radiation force optical coherence elastography system combined with the improved phase velocity algorithm was utilized to realize elasticity distribution images of the in vivo rabbit cornea after FS-LASIK under various intraocular pressure levels. As a result, elasticity variations within and between the regions of interest could be identified precisely. This is the first time that elasticity imaging of in vivo cornea after FS-LASIK surgery was demonstrated, and the results suggested that this technology may hold promise in further exploring corneal biomechanical properties after refractive surgery.</p>","PeriodicalId":184,"journal":{"name":"Journal of Biophotonics","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biophotonics","FirstCategoryId":"101","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbio.202300441","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Quantifying corneal elasticity after femtosecond laser-assisted in situ keratomileusis (FS-LASIK) procedure plays an important role in improving surgical safety and quality, since some latent complications may occur ascribing to changes in postoperative corneal biomechanics. Nevertheless, it is suggested that current research has been severely constrained due to the lack of an accurate quantification method to obtain postoperative corneal elasticity distribution. In this paper, an acoustic radiation force optical coherence elastography system combined with the improved phase velocity algorithm was utilized to realize elasticity distribution images of the in vivo rabbit cornea after FS-LASIK under various intraocular pressure levels. As a result, elasticity variations within and between the regions of interest could be identified precisely. This is the first time that elasticity imaging of in vivo cornea after FS-LASIK surgery was demonstrated, and the results suggested that this technology may hold promise in further exploring corneal biomechanical properties after refractive surgery.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用光学相干弹性成像技术定量评估 FS-LASIK 术后的角膜弹性分布。
飞秒激光辅助原位角膜磨镶术(FS-LASIK)术后角膜弹性的量化在提高手术安全性和质量方面起着重要作用,因为术后角膜生物力学的变化可能导致一些潜在并发症的发生。然而,由于缺乏精确的量化方法来获得术后角膜弹性分布,目前的研究受到了严重制约。本文利用声辐射力光学相干弹性成像系统,结合改进的相位速度算法,实现了FS-LASIK术后兔子角膜在不同眼压水平下的弹性分布图像。因此,可以精确识别相关区域内和区域间的弹性变化。这是首次展示 FS-LASIK 手术后活体角膜的弹性成像,结果表明该技术有望进一步探索屈光手术后角膜的生物力学特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Biophotonics
Journal of Biophotonics 生物-生化研究方法
CiteScore
5.70
自引率
7.10%
发文量
248
审稿时长
1 months
期刊介绍: The first international journal dedicated to publishing reviews and original articles from this exciting field, the Journal of Biophotonics covers the broad range of research on interactions between light and biological material. The journal offers a platform where the physicist communicates with the biologist and where the clinical practitioner learns about the latest tools for the diagnosis of diseases. As such, the journal is highly interdisciplinary, publishing cutting edge research in the fields of life sciences, medicine, physics, chemistry, and engineering. The coverage extends from fundamental research to specific developments, while also including the latest applications.
期刊最新文献
Front Cover Issue Information Front Cover Issue Information Combining red photobiomodulation therapy with polydioxanone threads for wrinkle reduction in the glabella region: A randomized, controlled, double-blind clinical trial
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1