MgO coated P2-Na0.67Mn0.75Ni0.25O2 layered oxide cathode for Na-Ion batteries

IF 5.4 Q2 CHEMISTRY, PHYSICAL Journal of Power Sources Advances Pub Date : 2024-01-01 DOI:10.1016/j.powera.2024.100135
Cornelius Gauckler , Gints Kucinskis , Lukas Fridolin Pfeiffer , Abdelaziz A. Abdellatif , Yushu Tang , Christian Kübel , Fabio Maroni , Ruihao Gong , Margret Wohlfahrt-Mehrens , Peter Axmann , Mario Marinaro
{"title":"MgO coated P2-Na0.67Mn0.75Ni0.25O2 layered oxide cathode for Na-Ion batteries","authors":"Cornelius Gauckler ,&nbsp;Gints Kucinskis ,&nbsp;Lukas Fridolin Pfeiffer ,&nbsp;Abdelaziz A. Abdellatif ,&nbsp;Yushu Tang ,&nbsp;Christian Kübel ,&nbsp;Fabio Maroni ,&nbsp;Ruihao Gong ,&nbsp;Margret Wohlfahrt-Mehrens ,&nbsp;Peter Axmann ,&nbsp;Mario Marinaro","doi":"10.1016/j.powera.2024.100135","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, we propose an effective strategy to improve the electrochemical performance of a P2-Na<sub>0.67</sub>Mn<sub>0.75</sub>Ni<sub>0.25</sub>O<sub>2</sub> (P2-MNO) cathode material for Na-ion batteries based on MgO surface coating. The MgO coating, with a thickness of ∼20–50 nm, is obtained by means of a facile wet-chemistry approach followed by heat treatment carried out at comparatively low temperatures (400–500 °C) in order to avoid possible Mg doping in the bulk of the P2-MNO. Detailed electrochemical investigations demonstrate improved electrochemical performance of the MgO-coated material (M-P2-MNO) in comparison to pristine bare one at both room and elevated (40 °C) temperatures. <em>Operando</em> differential electrochemical mass spectroscopy (DEMS) demonstrate that the MgO coating is effective in suppressing unwanted gas evolution due to side reactions thus stabilizing the cathode/electrolyte interface.</p></div>","PeriodicalId":34318,"journal":{"name":"Journal of Power Sources Advances","volume":"25 ","pages":"Article 100135"},"PeriodicalIF":5.4000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666248524000015/pdfft?md5=cc187801898b4e554c910f6ef3bafceb&pid=1-s2.0-S2666248524000015-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Power Sources Advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666248524000015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we propose an effective strategy to improve the electrochemical performance of a P2-Na0.67Mn0.75Ni0.25O2 (P2-MNO) cathode material for Na-ion batteries based on MgO surface coating. The MgO coating, with a thickness of ∼20–50 nm, is obtained by means of a facile wet-chemistry approach followed by heat treatment carried out at comparatively low temperatures (400–500 °C) in order to avoid possible Mg doping in the bulk of the P2-MNO. Detailed electrochemical investigations demonstrate improved electrochemical performance of the MgO-coated material (M-P2-MNO) in comparison to pristine bare one at both room and elevated (40 °C) temperatures. Operando differential electrochemical mass spectroscopy (DEMS) demonstrate that the MgO coating is effective in suppressing unwanted gas evolution due to side reactions thus stabilizing the cathode/electrolyte interface.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于钠离子电池的氧化镁涂层 P2-Na0.67Mn0.75Ni0.25O2 层状氧化物阴极
在本研究中,我们提出了一种基于氧化镁表面涂层的有效策略,以改善用于纳离子电池的 P2-Na0.67Mn0.75Ni0.25O2 (P2-MNO) 阴极材料的电化学性能。氧化镁涂层的厚度为 20-50 纳米,是通过一种简便的湿化学方法获得的,随后在相对较低的温度(400-500 °C)下进行热处理,以避免在 P2-MNO 的主体中掺杂镁。详细的电化学研究表明,氧化镁涂层材料(M-P2-MNO)在室温和高温(40 °C)下的电化学性能均优于原始裸露材料。操作微分电化学质谱 (DEMS) 显示,氧化镁涂层能有效抑制副反应引起的不必要的气体演化,从而稳定阴极/电解质界面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.10
自引率
0.00%
发文量
18
审稿时长
64 days
期刊最新文献
The effect of sidewall rupture on the propensity for thermal runaway propagation in a small lithium-ion battery module Synergetic effect of double-layer coating on silicon nanoparticles for high-performance lithium-ion battery anodes Formulating PEO-polycarbonate blends as solid polymer electrolytes by solvent-free extrusion Enhancing performance and sustainability of lithium manganese oxide cathodes with a poly(ionic liquid) binder and ionic liquid electrolyte Enhancing the stability of sodium-ion capacitors by introducing glyoxylic-acetal based electrolyte
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1