{"title":"CO2 to dimethylcarbonate synthesis: surface defects and oxygen vacancies engineering on MOF-derived CexZr1-xO2-y catalysts","authors":"Sergio Rojas-Buzo, Davide Salusso, Andrea Jouve, Edoardo Bracciotti, Matteo Signorile, Silvia Bordiga","doi":"10.1016/j.apcatb.2024.123723","DOIUrl":null,"url":null,"abstract":"<p>Direct reaction of carbon dioxide and methanol to produce dimethylcarbonate (DMC) is an interesting process that allows the synthesis of such valuable product in a more environmentally friendly route than the present technology that is expensive, unsafe and use toxic raw materials. Unfortunately, this alternative presents intrinsic limitations as the low yield due to thermodynamic limitation and reaction mechanism remains unclear. Herein, we propose a reproducible synthetic methodology of cerium oxide and Ce/Zr oxide solid solutions by calcination of opportune UiO-66(Ce/Zr) MOFs, employed as sacrificial precursors. The higher defectivity of these nanomaterials, corroborated by IR of adsorbed CO, in comparison with commercially-available ones, as those synthesized by traditional sol-gel methods, plays a pivotal role in the direct synthesis of DMC. Lastly, reaction mechanism was systematically and in-depth investigated by <em>in situ</em> AP-NEXAFS and MCR-ALS/LCF augmented IR spectroscopy, unveiling the role of oxygen vacancies towards CH<sub>3</sub>OH activation.</p>","PeriodicalId":244,"journal":{"name":"Applied Catalysis B: Environmental","volume":"46 1","pages":""},"PeriodicalIF":20.2000,"publicationDate":"2024-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Catalysis B: Environmental","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1016/j.apcatb.2024.123723","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Direct reaction of carbon dioxide and methanol to produce dimethylcarbonate (DMC) is an interesting process that allows the synthesis of such valuable product in a more environmentally friendly route than the present technology that is expensive, unsafe and use toxic raw materials. Unfortunately, this alternative presents intrinsic limitations as the low yield due to thermodynamic limitation and reaction mechanism remains unclear. Herein, we propose a reproducible synthetic methodology of cerium oxide and Ce/Zr oxide solid solutions by calcination of opportune UiO-66(Ce/Zr) MOFs, employed as sacrificial precursors. The higher defectivity of these nanomaterials, corroborated by IR of adsorbed CO, in comparison with commercially-available ones, as those synthesized by traditional sol-gel methods, plays a pivotal role in the direct synthesis of DMC. Lastly, reaction mechanism was systematically and in-depth investigated by in situ AP-NEXAFS and MCR-ALS/LCF augmented IR spectroscopy, unveiling the role of oxygen vacancies towards CH3OH activation.
期刊介绍:
Applied Catalysis B: Environment and Energy (formerly Applied Catalysis B: Environmental) is a journal that focuses on the transition towards cleaner and more sustainable energy sources. The journal's publications cover a wide range of topics, including:
1.Catalytic elimination of environmental pollutants such as nitrogen oxides, carbon monoxide, sulfur compounds, chlorinated and other organic compounds, and soot emitted from stationary or mobile sources.
2.Basic understanding of catalysts used in environmental pollution abatement, particularly in industrial processes.
3.All aspects of preparation, characterization, activation, deactivation, and regeneration of novel and commercially applicable environmental catalysts.
4.New catalytic routes and processes for the production of clean energy, such as hydrogen generation via catalytic fuel processing, and new catalysts and electrocatalysts for fuel cells.
5.Catalytic reactions that convert wastes into useful products.
6.Clean manufacturing techniques that replace toxic chemicals with environmentally friendly catalysts.
7.Scientific aspects of photocatalytic processes and a basic understanding of photocatalysts as applied to environmental problems.
8.New catalytic combustion technologies and catalysts.
9.New catalytic non-enzymatic transformations of biomass components.
The journal is abstracted and indexed in API Abstracts, Research Alert, Chemical Abstracts, Web of Science, Theoretical Chemical Engineering Abstracts, Engineering, Technology & Applied Sciences, and others.