Virus-mediated cell fusion of SARS-CoV-2 variants

IF 1.9 4区 数学 Q2 BIOLOGY Mathematical Biosciences Pub Date : 2024-01-13 DOI:10.1016/j.mbs.2024.109144
Ava Amidei , Hana M. Dobrovolny
{"title":"Virus-mediated cell fusion of SARS-CoV-2 variants","authors":"Ava Amidei ,&nbsp;Hana M. Dobrovolny","doi":"10.1016/j.mbs.2024.109144","DOIUrl":null,"url":null,"abstract":"<div><p><span>SARS-CoV-2 has the ability to form large multi-nucleated cells known as syncytia. Little is known about how syncytia affect the dynamics of the infection or severity of the disease. In this manuscript, we extend a mathematical model of cell–cell fusion assays to estimate both the syncytia formation rate and the average duration of the fusion phase for five strains of SARS-CoV-2. We find that the original Wuhan strain has the slowest rate of syncytia formation (</span><span><math><mrow><mn>6</mn><mo>.</mo><mn>4</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mo>−</mo><mn>4</mn></mrow></msup><mi>/</mi><mi>h</mi></mrow></math></span>), but takes only 4.0 h to complete the fusion process, while the Alpha strain has the fastest rate of syncytia formation (0.36 /h), but takes 7.6 h to complete the fusion process. The Beta strain also has a fairly fast syncytia formation rate (<span><math><mrow><mn>9</mn><mo>.</mo><mn>7</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup><mi>/</mi><mi>h</mi></mrow></math></span>), and takes the longest to complete fusion (8.4 h). The D614G strain has a fairly slow syncytia formation rate (<span><math><mrow><mn>2</mn><mo>.</mo><mn>8</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mo>−</mo><mn>3</mn></mrow></msup><mi>/</mi><mi>h</mi></mrow></math></span>), but completes fusion in 4.0 h. Finally, the Delta strain is in the middle with a syncytia formation rate of <span><math><mrow><mn>3</mn><mo>.</mo><mn>2</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup><mi>/</mi><mi>h</mi></mrow></math></span> and a fusing time of 6.1 h. We note that for these SARS-CoV-2 strains, there appears to be a tradeoff between the ease of forming syncytia and the speed at which they complete the fusion process.</p></div>","PeriodicalId":51119,"journal":{"name":"Mathematical Biosciences","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Biosciences","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002555642400004X","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

SARS-CoV-2 has the ability to form large multi-nucleated cells known as syncytia. Little is known about how syncytia affect the dynamics of the infection or severity of the disease. In this manuscript, we extend a mathematical model of cell–cell fusion assays to estimate both the syncytia formation rate and the average duration of the fusion phase for five strains of SARS-CoV-2. We find that the original Wuhan strain has the slowest rate of syncytia formation (6.4×104/h), but takes only 4.0 h to complete the fusion process, while the Alpha strain has the fastest rate of syncytia formation (0.36 /h), but takes 7.6 h to complete the fusion process. The Beta strain also has a fairly fast syncytia formation rate (9.7×102/h), and takes the longest to complete fusion (8.4 h). The D614G strain has a fairly slow syncytia formation rate (2.8×103/h), but completes fusion in 4.0 h. Finally, the Delta strain is in the middle with a syncytia formation rate of 3.2×102/h and a fusing time of 6.1 h. We note that for these SARS-CoV-2 strains, there appears to be a tradeoff between the ease of forming syncytia and the speed at which they complete the fusion process.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
病毒介导的 SARS-CoV-2 变种细胞融合
SARS-CoV-2 能够形成被称为合胞体的大型多核细胞。人们对合胞体如何影响感染动态或疾病严重程度知之甚少。在本手稿中,我们扩展了细胞-细胞融合测定的数学模型,以估计五株 SARS-CoV-2 的合胞体形成率和融合阶段的平均持续时间。我们发现,原始武汉株的合胞体形成速度最慢(6.4×10-4/h),但完成融合过程仅需 4.0 小时,而 Alpha 株的合胞体形成速度最快(0.36/h),但完成融合过程需 7.6 小时。Beta 菌株的合胞体形成速度也相当快(9.7×10-2/h),但完成融合所需的时间最长(8.4 小时)。我们注意到,对于这些 SARS-CoV-2 株系来说,在形成合胞体的难易程度和完成融合过程的速度之间似乎存在权衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Mathematical Biosciences
Mathematical Biosciences 生物-生物学
CiteScore
7.50
自引率
2.30%
发文量
67
审稿时长
18 days
期刊介绍: Mathematical Biosciences publishes work providing new concepts or new understanding of biological systems using mathematical models, or methodological articles likely to find application to multiple biological systems. Papers are expected to present a major research finding of broad significance for the biological sciences, or mathematical biology. Mathematical Biosciences welcomes original research articles, letters, reviews and perspectives.
期刊最新文献
A joint-threshold Filippov model describing the effect of intermittent androgen-deprivation therapy in controlling prostate cancer Adolescent vaping behaviours: Exploring the dynamics of a social contagion model Editorial Board Modeling virus-stimulated proliferation of CD4+ T-cell, cell-to-cell transmission and viral loss in HIV infection dynamics A mathematical model of melatonin synthesis and interactions with the circadian clock
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1