Microstructure and Mechanical Properties of TiC/WC-Reinforced AlCoCrFeNi High-Entropy Alloys Prepared by Laser Cladding

IF 2.4 4区 材料科学 Q2 CRYSTALLOGRAPHY Crystals Pub Date : 2024-01-15 DOI:10.3390/cryst14010083
Zhikai Zhu, Wenqing Shi, Jiang Huang
{"title":"Microstructure and Mechanical Properties of TiC/WC-Reinforced AlCoCrFeNi High-Entropy Alloys Prepared by Laser Cladding","authors":"Zhikai Zhu, Wenqing Shi, Jiang Huang","doi":"10.3390/cryst14010083","DOIUrl":null,"url":null,"abstract":"By employing the technology of laser cladding, AlCoCrFeNi–TiC20−x/WCx high-entropy alloy coatings (where x = 0, 5, 10, 15, and 20 is the mass fraction) were fabricated on 316L stainless steel (316Lss). The effects of changes in different mass fractions on the morphology, phase composition, microstructure, microhardness, and corrosion resistance of the composite coatings were studied. This demonstrates that the addition of TiC and WC powder produces an FCC phase in the original BCC phase, the morphology and size of the coatings from top to bottom undergo some changes with x, and the grain size evolution follows a cooling rate law. The evolution of microhardness and corrosion resistance of the coatings exhibit a trend of increasing first and then decreasing with an increase in x. The coatings exhibited their best microhardness and corrosion resistance when x = 15, and their corrosion resistance and microhardness were much better than those of the substrate.","PeriodicalId":10855,"journal":{"name":"Crystals","volume":"48 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crystals","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/cryst14010083","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CRYSTALLOGRAPHY","Score":null,"Total":0}
引用次数: 0

Abstract

By employing the technology of laser cladding, AlCoCrFeNi–TiC20−x/WCx high-entropy alloy coatings (where x = 0, 5, 10, 15, and 20 is the mass fraction) were fabricated on 316L stainless steel (316Lss). The effects of changes in different mass fractions on the morphology, phase composition, microstructure, microhardness, and corrosion resistance of the composite coatings were studied. This demonstrates that the addition of TiC and WC powder produces an FCC phase in the original BCC phase, the morphology and size of the coatings from top to bottom undergo some changes with x, and the grain size evolution follows a cooling rate law. The evolution of microhardness and corrosion resistance of the coatings exhibit a trend of increasing first and then decreasing with an increase in x. The coatings exhibited their best microhardness and corrosion resistance when x = 15, and their corrosion resistance and microhardness were much better than those of the substrate.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
激光熔覆法制备的 TiC/WC 增强铝钴铬铁镍高熵合金的显微结构和力学性能
通过采用激光熔覆技术,在 316L 不锈钢(316Lss)上制备了 AlCoCrFeNi-TiC20-x/WCx 高熵合金涂层(其中 x = 0、5、10、15 和 20 为质量分数)。研究了不同质量分数的变化对复合涂层的形态、相组成、微观结构、显微硬度和耐腐蚀性的影响。结果表明,加入 TiC 和 WC 粉后,在原来的 BCC 相中产生了 FCC 相,涂层从上到下的形貌和尺寸随 x 的变化而发生一定的变化,晶粒尺寸的演变遵循冷却速率规律。涂层的显微硬度和耐腐蚀性随 x 的增大呈先增大后减小的趋势。当 x = 15 时,涂层的显微硬度和耐腐蚀性最好,其耐腐蚀性和显微硬度远远优于基体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Crystals
Crystals CRYSTALLOGRAPHYMATERIALS SCIENCE, MULTIDIS-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
4.20
自引率
11.10%
发文量
1527
审稿时长
16.12 days
期刊介绍: Crystals (ISSN 2073-4352) is an open access journal that covers all aspects of crystalline material research. Crystals can act as a reference, and as a publication resource, to the community. It publishes reviews, regular research articles, and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on article length. Full experimental details must be provided to enable the results to be reproduced. Crystals provides a  forum for the advancement of our understanding of the nucleation, growth, processing, and characterization of crystalline materials. Their mechanical, chemical, electronic, magnetic, and optical properties, and their diverse applications, are all considered to be of importance.
期刊最新文献
Crystal Structure, Microstructure, and Dielectric and Electrical Properties of Ceramic Material Prepared Using Volcanic Ash Recent Advances in Ammonia Synthesis Modeling and Experiments on Metal Nitrides and Other Catalytic Surfaces Impact of Mg on the Feeding Ability of Cast Al–Si7–Mg(0_0.2_0.4_0.6) Alloys General Trends in the Compression of Glasses and Liquids Single-Crystal Structure Analysis of Dicarboxamides: Impact of Heteroatoms on Hydrogen Bonding of Carboxamide Groups
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1