{"title":"Crystal Structure, Microstructure, and Dielectric and Electrical Properties of Ceramic Material Prepared Using Volcanic Ash","authors":"Shoroog Alraddadi","doi":"10.3390/cryst14090817","DOIUrl":null,"url":null,"abstract":"In the present work, the electrical and dielectric properties of ceramic samples prepared from volcanic ash were investigated. For this purpose, ceramic samples were prepared using milled volcanic ash with a binder material at a sintering temperature of 950 °C for 2 h. The chemical content of the milled volcanic ash was investigated using XRF. Differential thermal analysis and thermogravimetry were performed to determine the firing conditions. The crystalline phases and microstructures of the ceramic samples were investigated using XRD and SEM, respectively. Finally, the electrical and dielectric properties of the obtained samples were evaluated at a frequency ranging from 1 × 102 to 4 × 106 Hz and temperatures ranging from room temperature to 800 °C. The XRD results revealed that the ceramic samples contained three main phases: albite, hematite, and augite. Moreover, the microstructures of the samples exhibited a large crystal size with a dense surface. The conductivities and dielectric constants of the samples remained stable up to 500 °C. The real and imaginary parts of the dielectric constant decreased with an increase in frequency and increased with an increase in temperature. The results indicated that ceramics based on volcanic ash are promising for use in technological applications such as high-voltage power insulators.","PeriodicalId":10855,"journal":{"name":"Crystals","volume":"10 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crystals","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/cryst14090817","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CRYSTALLOGRAPHY","Score":null,"Total":0}
引用次数: 0
Abstract
In the present work, the electrical and dielectric properties of ceramic samples prepared from volcanic ash were investigated. For this purpose, ceramic samples were prepared using milled volcanic ash with a binder material at a sintering temperature of 950 °C for 2 h. The chemical content of the milled volcanic ash was investigated using XRF. Differential thermal analysis and thermogravimetry were performed to determine the firing conditions. The crystalline phases and microstructures of the ceramic samples were investigated using XRD and SEM, respectively. Finally, the electrical and dielectric properties of the obtained samples were evaluated at a frequency ranging from 1 × 102 to 4 × 106 Hz and temperatures ranging from room temperature to 800 °C. The XRD results revealed that the ceramic samples contained three main phases: albite, hematite, and augite. Moreover, the microstructures of the samples exhibited a large crystal size with a dense surface. The conductivities and dielectric constants of the samples remained stable up to 500 °C. The real and imaginary parts of the dielectric constant decreased with an increase in frequency and increased with an increase in temperature. The results indicated that ceramics based on volcanic ash are promising for use in technological applications such as high-voltage power insulators.
期刊介绍:
Crystals (ISSN 2073-4352) is an open access journal that covers all aspects of crystalline material research. Crystals can act as a reference, and as a publication resource, to the community. It publishes reviews, regular research articles, and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on article length. Full experimental details must be provided to enable the results to be reproduced. Crystals provides a forum for the advancement of our understanding of the nucleation, growth, processing, and characterization of crystalline materials. Their mechanical, chemical, electronic, magnetic, and optical properties, and their diverse applications, are all considered to be of importance.