Heterojunction-Induced Rapid Transformation of Ni3+/Ni2+ Sites which Mediates Urea Oxidation for Energy-Efficient Hydrogen Production

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Materials Pub Date : 2024-01-16 DOI:10.1002/adma.202311766
Peng Guo, Shoufu Cao, Wenjing Huang, Xiaoqing Lu, Weizhe Chen, Youzi Zhang, Yijin Wang, Xu Xin, Ruiqing Zou, Sibi Liu, Xuanhua Li
{"title":"Heterojunction-Induced Rapid Transformation of Ni3+/Ni2+ Sites which Mediates Urea Oxidation for Energy-Efficient Hydrogen Production","authors":"Peng Guo,&nbsp;Shoufu Cao,&nbsp;Wenjing Huang,&nbsp;Xiaoqing Lu,&nbsp;Weizhe Chen,&nbsp;Youzi Zhang,&nbsp;Yijin Wang,&nbsp;Xu Xin,&nbsp;Ruiqing Zou,&nbsp;Sibi Liu,&nbsp;Xuanhua Li","doi":"10.1002/adma.202311766","DOIUrl":null,"url":null,"abstract":"<p>Water electrolysis is an environmentally-friendly strategy for hydrogen production but suffers from significant energy consumption. Substituting urea oxidation reaction (UOR) with lower theoretical voltage for water oxidation reaction adopting nickel-based electrocatalysts engenders reduced energy consumption for hydrogen production. The main obstacle remains strong interaction between accumulated Ni<sup>3+</sup> and *COO in the conventional Ni<sup>3+</sup>-catalyzing pathway. Herein, a novel Ni<sup>3+</sup>/Ni<sup>2+</sup> mediated pathway for UOR via constructing a heterojunction of nickel metaphosphate and nickel telluride (Ni<sub>2</sub>P<sub>4</sub>O<sub>12</sub>/NiTe), which efficiently lowers the energy barrier of UOR and avoids the accumulation of Ni<sup>3+</sup> and excessive adsorption of *COO on the electrocatalysts, is developed. As a result, Ni<sub>2</sub>P<sub>4</sub>O<sub>12</sub>/NiTe demonstrates an exceptionally low potential of 1.313 V to achieve a current density of 10 mA cm<sup>−2</sup> toward efficient urea oxidation reaction while simultaneously showcases an overpotential of merely 24 mV at 10 mA cm<sup>−2</sup> for hydrogen evolution reaction. Constructing urea electrolysis electrolyzer using Ni<sub>2</sub>P<sub>4</sub>O<sub>12</sub>/NiTe at both sides attains 100 mA cm<sup>−2</sup> at a low cell voltage of 1.475 V along with excellent stability over 500 h accompanied with nearly 100% Faradic efficiency.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"36 18","pages":""},"PeriodicalIF":27.4000,"publicationDate":"2024-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adma.202311766","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Water electrolysis is an environmentally-friendly strategy for hydrogen production but suffers from significant energy consumption. Substituting urea oxidation reaction (UOR) with lower theoretical voltage for water oxidation reaction adopting nickel-based electrocatalysts engenders reduced energy consumption for hydrogen production. The main obstacle remains strong interaction between accumulated Ni3+ and *COO in the conventional Ni3+-catalyzing pathway. Herein, a novel Ni3+/Ni2+ mediated pathway for UOR via constructing a heterojunction of nickel metaphosphate and nickel telluride (Ni2P4O12/NiTe), which efficiently lowers the energy barrier of UOR and avoids the accumulation of Ni3+ and excessive adsorption of *COO on the electrocatalysts, is developed. As a result, Ni2P4O12/NiTe demonstrates an exceptionally low potential of 1.313 V to achieve a current density of 10 mA cm−2 toward efficient urea oxidation reaction while simultaneously showcases an overpotential of merely 24 mV at 10 mA cm−2 for hydrogen evolution reaction. Constructing urea electrolysis electrolyzer using Ni2P4O12/NiTe at both sides attains 100 mA cm−2 at a low cell voltage of 1.475 V along with excellent stability over 500 h accompanied with nearly 100% Faradic efficiency.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
异质结诱导 Ni3+ /Ni2+ 位点快速转化,从而介导尿素氧化,实现高能效制氢。
水电解是一种环境友好型制氢策略,但能耗巨大。采用镍基电催化剂,用理论电压较低的尿素氧化反应(UOR)代替水氧化反应,可降低制氢能耗。在传统的 Ni3+ 催化途径中,主要障碍仍然是累积的 Ni3+ 和 *COO 之间的强烈相互作用。在此,我们通过构建偏磷酸镍和碲化镍的异质结(Ni2 P4 O12 /NiTe),开发出一种新型的以 Ni3+ /Ni2+ 为介导的 UOR 途径,从而有效降低了 UOR 的能垒,避免了 Ni3+ 的积累和 *COO 在电催化剂上的过度吸附。因此,Ni2 P4 O12 /NiTe 具有 1.313 V 的超低电位,可实现 10 mA cm-2 的电流密度,从而进行高效的尿素氧化反应;同时,在 10 mA cm-2 的电流密度下,氢进化反应的过电位仅为 24 mV。利用 Ni2 P4 O12 /NiTe 两面构建的尿素电解电解槽可在 1.475 V 的低电池电压下实现 100 mA cm-2 的电流密度,并且在 500 小时内具有极佳的稳定性,法拉第效率接近 100%。本文受版权保护。保留所有权利。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
期刊最新文献
Reactive Oxygen Species Resistive Redox Mediator in Lithium–Oxygen Batteries Permanent Electride Magnets Induced by Quasi-Atomic Non-Nucleus-Bound Electrons High-Entropy Metal Interstitials Activate TiO2 for Robust Catalytic Oxidation Tunable Bicontinuous Macroporous Cell Culture Scaffolds via Kinetically Controlled Phase Separation Realizing C–C Coupling via Accumulation of C1 Intermediates within Dual-Vacancy-Induced Dipole-Limited Domain Field to Propel Photoreduction of CO2-to-C2 Fuel
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1