{"title":"Nanomaterials for Fluorescent Detection of Hemoglobin.","authors":"Yongming Guo, Yiting Tang, Yu Tan, Yijin Li, Yubin Xiang","doi":"10.1080/10408347.2023.2301660","DOIUrl":null,"url":null,"abstract":"<p><p>Hemoglobin plays a vital role in a series of biological activities. Abnormal levels of hemoglobin in blood are associated with many clinical diseases. Therefore, development of simple and accurate methods for sensing hemoglobin is of considerable significance. The blowout advancement in nanotechnology has urged the use of different types of fluorescent nanomaterials for hemoglobin assay. The past decades have witnessed the rapid progress of fluorescent nanosensors for hemoglobin assay. In the review, the sensing principles of fluorescent nanomaterials for sensing hemoglobin were briefly discussed. The advances of fluorescent nanosensors for detection of hemoglobin were further highlighted. And the sensing performance of fluorescent nanosensors versus traditional detection approaches was compared. Finally, the challenges and future directions of fluorescent nanomaterials for detection of hemoglobin are discussed. The review will arouse much more attention to the construction of hemoglobin sensors and facilitate rapid development of fluorescent nanosensors of hemoglobin.</p>","PeriodicalId":10744,"journal":{"name":"Critical reviews in analytical chemistry","volume":" ","pages":"1-15"},"PeriodicalIF":4.2000,"publicationDate":"2024-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical reviews in analytical chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1080/10408347.2023.2301660","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Hemoglobin plays a vital role in a series of biological activities. Abnormal levels of hemoglobin in blood are associated with many clinical diseases. Therefore, development of simple and accurate methods for sensing hemoglobin is of considerable significance. The blowout advancement in nanotechnology has urged the use of different types of fluorescent nanomaterials for hemoglobin assay. The past decades have witnessed the rapid progress of fluorescent nanosensors for hemoglobin assay. In the review, the sensing principles of fluorescent nanomaterials for sensing hemoglobin were briefly discussed. The advances of fluorescent nanosensors for detection of hemoglobin were further highlighted. And the sensing performance of fluorescent nanosensors versus traditional detection approaches was compared. Finally, the challenges and future directions of fluorescent nanomaterials for detection of hemoglobin are discussed. The review will arouse much more attention to the construction of hemoglobin sensors and facilitate rapid development of fluorescent nanosensors of hemoglobin.
期刊介绍:
Critical Reviews in Analytical Chemistry continues to be a dependable resource for both the expert and the student by providing in-depth, scholarly, insightful reviews of important topics within the discipline of analytical chemistry and related measurement sciences. The journal exclusively publishes review articles that illuminate the underlying science, that evaluate the field''s status by putting recent developments into proper perspective and context, and that speculate on possible future developments. A limited number of articles are of a "tutorial" format written by experts for scientists seeking introduction or clarification in a new area.
This journal serves as a forum for linking various underlying components in broad and interdisciplinary means, while maintaining balance between applied and fundamental research. Topics we are interested in receiving reviews on are the following:
· chemical analysis;
· instrumentation;
· chemometrics;
· analytical biochemistry;
· medicinal analysis;
· forensics;
· environmental sciences;
· applied physics;
· and material science.