首页 > 最新文献

Critical reviews in analytical chemistry最新文献

英文 中文
The Overview for the Stability Improvement Strategy of LIBS Spectrum and Analysis Model: From Physics System to Analysis Method.
IF 4.2 2区 化学 Q1 CHEMISTRY, ANALYTICAL Pub Date : 2025-01-13 DOI: 10.1080/10408347.2024.2449069
Jiujiang Yan, Jinxiu Ma, Ke Liu, Yang Li, Hongwei Wei, Kailong Li, Lexian Yuan

Laser-induced breakdown spectroscopy (LIBS) technology has been widely used in many fields including industrial production, space exploration, medical analysis, environmental pollution detection, etc. However, the stability problem of LIBS is one of the core problems for its further development. Solutions in the LIBS field in recent decades were summarized and classified from the physical mechanism and analysis method. In particular, the processing methods based on the features of the plasma image and reconstructed image were analyzed and expounded. At the physical mechanism level, the system improvement strategy, environmental modulation strategy, and sample pretreatment improvement strategy were summarized and classified as a pre-improvement strategy. At the analysis method level, two kinds of correction strategies were concluded according to the difference between the feature mediums of the plasma spectrum and image, which were classified as a later improvement strategy. Strategies and methods were discussed in detail, which can provide a basic architecture and reference for the research of LIBS stability improvement. Moreover, the potential developing trend for this topic was proposed.

{"title":"The Overview for the Stability Improvement Strategy of LIBS Spectrum and Analysis Model: From Physics System to Analysis Method.","authors":"Jiujiang Yan, Jinxiu Ma, Ke Liu, Yang Li, Hongwei Wei, Kailong Li, Lexian Yuan","doi":"10.1080/10408347.2024.2449069","DOIUrl":"https://doi.org/10.1080/10408347.2024.2449069","url":null,"abstract":"<p><p>Laser-induced breakdown spectroscopy (LIBS) technology has been widely used in many fields including industrial production, space exploration, medical analysis, environmental pollution detection, etc. However, the stability problem of LIBS is one of the core problems for its further development. Solutions in the LIBS field in recent decades were summarized and classified from the physical mechanism and analysis method. In particular, the processing methods based on the features of the plasma image and reconstructed image were analyzed and expounded. At the physical mechanism level, the system improvement strategy, environmental modulation strategy, and sample pretreatment improvement strategy were summarized and classified as a pre-improvement strategy. At the analysis method level, two kinds of correction strategies were concluded according to the difference between the feature mediums of the plasma spectrum and image, which were classified as a later improvement strategy. Strategies and methods were discussed in detail, which can provide a basic architecture and reference for the research of LIBS stability improvement. Moreover, the potential developing trend for this topic was proposed.</p>","PeriodicalId":10744,"journal":{"name":"Critical reviews in analytical chemistry","volume":" ","pages":"1-19"},"PeriodicalIF":4.2,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142969933","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ion Sensing via Modulation of Charge Transfer in Donor-pi-Acceptor Molecules: Structure, Mechanism & Photophysical Aspects.
IF 4.2 2区 化学 Q1 CHEMISTRY, ANALYTICAL Pub Date : 2025-01-11 DOI: 10.1080/10408347.2025.2450070
Wasseem Akbar, Erum Gull Naz, Masood Ayoub Kaloo

This review article highlights the importance of novel charge transfer (CT) sensing approach for the detection of ions which are crucial from environmental and biological point of view. The importance, principles of charge transfer, ion sensing, its different types, and its basic process will all be covered here. The strategy has been reported with enormous sensitivity and fast signaling response owing to the fact that strong electronic connection communication exists between donor (D) and acceptor (A) part. Important discoveries made since 2010 will be examined. Herein, we will showcase the binding constants, conditions employed for sensing, and limit of detection of crucial ions via CT based sensors that researchers have bough forth for real-time applications. Additionally, the focus will be on the mechanistic aspects and signaling response as a result of the interaction between ion and sensor molecule.

{"title":"Ion Sensing <i>via</i> Modulation of Charge Transfer in Donor-pi-Acceptor Molecules: Structure, Mechanism & Photophysical Aspects.","authors":"Wasseem Akbar, Erum Gull Naz, Masood Ayoub Kaloo","doi":"10.1080/10408347.2025.2450070","DOIUrl":"https://doi.org/10.1080/10408347.2025.2450070","url":null,"abstract":"<p><p>This review article highlights the importance of novel charge transfer (CT) sensing approach for the detection of ions which are crucial from environmental and biological point of view. The importance, principles of charge transfer, ion sensing, its different types, and its basic process will all be covered here. The strategy has been reported with enormous sensitivity and fast signaling response owing to the fact that strong electronic connection communication exists between donor (D) and acceptor (A) part. Important discoveries made since 2010 will be examined. Herein, we will showcase the binding constants, conditions employed for sensing, and limit of detection of crucial ions <i>via</i> CT based sensors that researchers have bough forth for real-time applications. Additionally, the focus will be on the mechanistic aspects and signaling response as a result of the interaction between ion and sensor molecule.</p>","PeriodicalId":10744,"journal":{"name":"Critical reviews in analytical chemistry","volume":" ","pages":"1-8"},"PeriodicalIF":4.2,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142964125","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent Advances in Fluorescent Based Chemical Probes for the Detection of Perchlorate Ions.
IF 4.2 2区 化学 Q1 CHEMISTRY, ANALYTICAL Pub Date : 2025-01-09 DOI: 10.1080/10408347.2024.2447299
Gilbert K Kosgei, P U Ashvin Iresh Fernando

This review highlights recent advancements and challenges in fluorescence-based chemical sensors for selective and sensitive detection of perchlorate, a persistent environmental pollutant and global concern due to its health and safety implications. Perchlorate is a highly persistent inorganic pollutant found in drinking water, soil, and air, with known endocrine-disruptive properties due to its interference with iodide uptake by the thyroid gland. Human exposure mainly occurs through contaminated water and food. Additionally, perchlorates are prevalent in improvised explosives, causing numerous civilian casualties, making their detection important in a worldwide aspect. Fluorescence-based chemical sensors provide a valuable tool for the selective detection of perchlorate ions due to their simplicity and applicability across various fields, including biology, pharmacology, military, and environmental science. This review article overviews perchlorate chemistry, occurrence, and remediation strategies, compares regulatory limits, and examines fluorescence-based detection mechanisms. It systematically summarizes recent advancements in designing at least a dozen fluorescence-based chemical materials for detecting perchlorate in the environment over the past decade. Key focus areas include the design and molecular architecture of synthetic chemical chromophores for perchlorate sensing and the photochemistry mechanisms driving their effectiveness. The main findings indicate that there has been significant progress in the development of reliable and robust fluorescence-based sensors with higher selectivity and sensitivity for perchlorate detection. However, several challenges remain, such as improving detection limits and sensor stability. The review outlines potential future research directions, emphasizing the need for further innovation in sensor design and development. It aims to enhance understanding and spur advances that could create more efficient and robust chemical scaffolds for perchlorate sensing. By addressing current limitations and identifying opportunities for improvement, the review provides a comprehensive resource for researchers working to develop better detection methods for this significant environmental pollutant.

{"title":"Recent Advances in Fluorescent Based Chemical Probes for the Detection of Perchlorate Ions.","authors":"Gilbert K Kosgei, P U Ashvin Iresh Fernando","doi":"10.1080/10408347.2024.2447299","DOIUrl":"https://doi.org/10.1080/10408347.2024.2447299","url":null,"abstract":"<p><p>This review highlights recent advancements and challenges in fluorescence-based chemical sensors for selective and sensitive detection of perchlorate, a persistent environmental pollutant and global concern due to its health and safety implications. Perchlorate is a highly persistent inorganic pollutant found in drinking water, soil, and air, with known endocrine-disruptive properties due to its interference with iodide uptake by the thyroid gland. Human exposure mainly occurs through contaminated water and food. Additionally, perchlorates are prevalent in improvised explosives, causing numerous civilian casualties, making their detection important in a worldwide aspect. Fluorescence-based chemical sensors provide a valuable tool for the selective detection of perchlorate ions due to their simplicity and applicability across various fields, including biology, pharmacology, military, and environmental science. This review article overviews perchlorate chemistry, occurrence, and remediation strategies, compares regulatory limits, and examines fluorescence-based detection mechanisms. It systematically summarizes recent advancements in designing at least a dozen fluorescence-based chemical materials for detecting perchlorate in the environment over the past decade. Key focus areas include the design and molecular architecture of synthetic chemical chromophores for perchlorate sensing and the photochemistry mechanisms driving their effectiveness. The main findings indicate that there has been significant progress in the development of reliable and robust fluorescence-based sensors with higher selectivity and sensitivity for perchlorate detection. However, several challenges remain, such as improving detection limits and sensor stability. The review outlines potential future research directions, emphasizing the need for further innovation in sensor design and development. It aims to enhance understanding and spur advances that could create more efficient and robust chemical scaffolds for perchlorate sensing. By addressing current limitations and identifying opportunities for improvement, the review provides a comprehensive resource for researchers working to develop better detection methods for this significant environmental pollutant.</p>","PeriodicalId":10744,"journal":{"name":"Critical reviews in analytical chemistry","volume":" ","pages":"1-25"},"PeriodicalIF":4.2,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142945988","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Targeted Analysis, Metabolic Profiling, and Fingerprinting Based on an LC(GC)-MS Approach for the Comprehensive Evaluation of Pesticide Content in Edible Plants.
IF 4.2 2区 化学 Q1 CHEMISTRY, ANALYTICAL Pub Date : 2025-01-09 DOI: 10.1080/10408347.2024.2449062
Joanna Płonka, Marianna Kostina-Bednarz, Hanna Barchanska

Pesticides are commonly found in plant-based foods, which inevitably reduces food quality and poses significant health risks to consumers. The extensive variety of crops and the wide range of pesticides used means that no single analytical approach can provide clear and comprehensive information on the pesticide-protection status of a crop. Since most pesticide analyses in food rely on chromatographic techniques combined with various MS platforms, this article focuses exclusively on LC-MS and GC-MS system methodologies. In summary, this paper critically reviews analytical modes-specifically, multi reaction monitoring, data-dependent analysis, and data-independent analysis-and scanning regimes, including full scan, MS, MS/MS, suspect screening, and fingerprinting strategies, for pesticide detection in edible plants. The advantages and disadvantages of these methodologies, as well as their complementary applications, are thoroughly examined.

{"title":"Targeted Analysis, Metabolic Profiling, and Fingerprinting Based on an LC(GC)-MS Approach for the Comprehensive Evaluation of Pesticide Content in Edible Plants.","authors":"Joanna Płonka, Marianna Kostina-Bednarz, Hanna Barchanska","doi":"10.1080/10408347.2024.2449062","DOIUrl":"https://doi.org/10.1080/10408347.2024.2449062","url":null,"abstract":"<p><p>Pesticides are commonly found in plant-based foods, which inevitably reduces food quality and poses significant health risks to consumers. The extensive variety of crops and the wide range of pesticides used means that no single analytical approach can provide clear and comprehensive information on the pesticide-protection status of a crop. Since most pesticide analyses in food rely on chromatographic techniques combined with various MS platforms, this article focuses exclusively on LC-MS and GC-MS system methodologies. In summary, this paper critically reviews analytical modes-specifically, multi reaction monitoring, data-dependent analysis, and data-independent analysis-and scanning regimes, including full scan, MS, MS/MS, suspect screening, and fingerprinting strategies, for pesticide detection in edible plants. The advantages and disadvantages of these methodologies, as well as their complementary applications, are thoroughly examined.</p>","PeriodicalId":10744,"journal":{"name":"Critical reviews in analytical chemistry","volume":" ","pages":"1-26"},"PeriodicalIF":4.2,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142945991","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Monitoring Antibiotic Pollutants in Water Using Electrochemical Techniques: A Detailed Review.
IF 4.2 2区 化学 Q1 CHEMISTRY, ANALYTICAL Pub Date : 2025-01-08 DOI: 10.1080/10408347.2024.2390549
Vinay B K, Suranjan T R

This review article examines the application of electrochemical methods for detecting four prevalent antibiotics - azithromycin (AZM), amoxicillin (AMX), tetracycline (TC), and ciprofloxacin (CIP) - in environmental monitoring. Although, antibiotics are essential to contemporary treatment, their widespread usage has contaminated the environment and given rise to antibiotic resistance. Electrochemical techniques offer sensitive, rapid, and cost-effective solutions for monitoring these antibiotics, addressing the limitations of traditional methods. The review provides a comprehensive analysis of various electrochemical approaches, including voltammetry, amperometry, photoelectrochemical and so on, highlighting their principles, advantages, and limitations. Key findings underscore the effectiveness of these methods in detecting antibiotics at trace levels in complex environmental matrices. Implications for environmental health and policy are discussed, emphasizing the importance of reliable detection techniques in mitigating antibiotic resistance and safeguarding ecosystems. Lastly, the article outlines future research directions aimed at enhancing the sensitivity, selectivity, and field-applicability of electrochemical sensors, thus advancing their utility in environmental monitoring and public health protection.

{"title":"Monitoring Antibiotic Pollutants in Water Using Electrochemical Techniques: A Detailed Review.","authors":"Vinay B K, Suranjan T R","doi":"10.1080/10408347.2024.2390549","DOIUrl":"https://doi.org/10.1080/10408347.2024.2390549","url":null,"abstract":"<p><p>This review article examines the application of electrochemical methods for detecting four prevalent antibiotics - azithromycin (AZM), amoxicillin (AMX), tetracycline (TC), and ciprofloxacin (CIP) - in environmental monitoring. Although, antibiotics are essential to contemporary treatment, their widespread usage has contaminated the environment and given rise to antibiotic resistance. Electrochemical techniques offer sensitive, rapid, and cost-effective solutions for monitoring these antibiotics, addressing the limitations of traditional methods. The review provides a comprehensive analysis of various electrochemical approaches, including voltammetry, amperometry, photoelectrochemical and so on, highlighting their principles, advantages, and limitations. Key findings underscore the effectiveness of these methods in detecting antibiotics at trace levels in complex environmental matrices. Implications for environmental health and policy are discussed, emphasizing the importance of reliable detection techniques in mitigating antibiotic resistance and safeguarding ecosystems. Lastly, the article outlines future research directions aimed at enhancing the sensitivity, selectivity, and field-applicability of electrochemical sensors, thus advancing their utility in environmental monitoring and public health protection.</p>","PeriodicalId":10744,"journal":{"name":"Critical reviews in analytical chemistry","volume":" ","pages":"1-30"},"PeriodicalIF":4.2,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142945985","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chromium Detection in Water Using Optical Methods: A Study of Reagent and Reagentless Approaches.
IF 4.2 2区 化学 Q1 CHEMISTRY, ANALYTICAL Pub Date : 2025-01-08 DOI: 10.1080/10408347.2024.2419896
Vinay B K, Sudeshna Bagchi, Suranjan T R

Water contaminated with chromium (Cr) poses significant risks to public health and the environment, necessitating reliable detection techniques. This review study uniquely provides a comprehensive analysis of optical methods for detecting Cr pollution in water, focusing on both reagent-based and reagentless approaches, as well as various sensing platforms. Unlike existing reviews that primarily focus on electrochemical and colorimetric/fluorimetric methods, this work highlights the untapped potential of optical technologies, such as colorimetry, SPR, UV-Vis spectroscopy, and more, in detecting distinct Cr species, including reagent and reagentless based approaches. The findings demonstrate the high sensitivity and specificity of optical methods. Reagent-based approaches offer exceptional sensitivity but involve complex preparation and potential secondary contamination. In contrast, reagentless methods, while requiring sophisticated calibration, are more environmentally friendly and simpler to implement. Future directions emphasize the development of portable, cost-effective optical devices, improved Cr species differentiation, and integration with real-time data processing and remote sensing for enhanced field monitoring. This study informs researchers and policymakers about the latest advancements in optical detection techniques and their potential to enhance water quality monitoring.

{"title":"Chromium Detection in Water Using Optical Methods: A Study of Reagent and Reagentless Approaches.","authors":"Vinay B K, Sudeshna Bagchi, Suranjan T R","doi":"10.1080/10408347.2024.2419896","DOIUrl":"https://doi.org/10.1080/10408347.2024.2419896","url":null,"abstract":"<p><p>Water contaminated with chromium (Cr) poses significant risks to public health and the environment, necessitating reliable detection techniques. This review study uniquely provides a comprehensive analysis of optical methods for detecting Cr pollution in water, focusing on both reagent-based and reagentless approaches, as well as various sensing platforms. Unlike existing reviews that primarily focus on electrochemical and colorimetric/fluorimetric methods, this work highlights the untapped potential of optical technologies, such as colorimetry, SPR, UV-Vis spectroscopy, and more, in detecting distinct Cr species, including reagent and reagentless based approaches. The findings demonstrate the high sensitivity and specificity of optical methods. Reagent-based approaches offer exceptional sensitivity but involve complex preparation and potential secondary contamination. In contrast, reagentless methods, while requiring sophisticated calibration, are more environmentally friendly and simpler to implement. Future directions emphasize the development of portable, cost-effective optical devices, improved Cr species differentiation, and integration with real-time data processing and remote sensing for enhanced field monitoring. This study informs researchers and policymakers about the latest advancements in optical detection techniques and their potential to enhance water quality monitoring.</p>","PeriodicalId":10744,"journal":{"name":"Critical reviews in analytical chemistry","volume":" ","pages":"1-38"},"PeriodicalIF":4.2,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142945879","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Comprehensive Review of the Recent Developments in the Electroanalytical Methods for the Therapeutic Monitoring of Antiepileptic Drugs.
IF 4.2 2区 化学 Q1 CHEMISTRY, ANALYTICAL Pub Date : 2025-01-05 DOI: 10.1080/10408347.2024.2416688
Marwa El Badry Mohamed, Shahd Ayman Muhammed, Mustafa Ashraf Elsayed, Rahma Muhammed Ali, Reem Ahmed Mahmoud, Michael Magdy Fathy

Epilepsy is a serious neurological disease that impacts all facets of a patient's life, including their socioeconomic situation. The failure to identify underlying epileptic signatures in their early stages might result in severe harm to the central nervous system (CNS) and permanent adverse changes to some organs. Therefore, numerous antiepileptic drugs (AEDs) are frequently used to control and treat the frequency of seizures. Since clinical effects and plasma concentration are directly correlated, determining AED levels in various samples has drawn a lot of interest in the optimization of drug doses. In the past several years, various generations of AEDs have appeared, and a variety of techniques have been widely used to analyze AEDs, including HPLC, chromatography, spectrometry, and electrochemical methods such as voltammetric, potentiometric, and others that can help in the analysis of these drugs because of their special benefits, which include quick analysis, high sensitivity, high selectivity, low cost, and dependable results. For the first time, this review article details the most recent advancements in the electrochemical measurement techniques used in the analysis of some of the most effective drugs in the three generations of AEDs in various samples using diverse electrode types, including glassy carbon electrodes (GCE), gold electrodes, pencil graphite electrodes (PGE), and other types. In addition to summarizing their mode of action and side effects. Finally, we will present the prospects for the development of electrochemical platforms for the determination of the next generation of AEDs.

{"title":"A Comprehensive Review of the Recent Developments in the Electroanalytical Methods for the Therapeutic Monitoring of Antiepileptic Drugs.","authors":"Marwa El Badry Mohamed, Shahd Ayman Muhammed, Mustafa Ashraf Elsayed, Rahma Muhammed Ali, Reem Ahmed Mahmoud, Michael Magdy Fathy","doi":"10.1080/10408347.2024.2416688","DOIUrl":"https://doi.org/10.1080/10408347.2024.2416688","url":null,"abstract":"<p><p>Epilepsy is a serious neurological disease that impacts all facets of a patient's life, including their socioeconomic situation. The failure to identify underlying epileptic signatures in their early stages might result in severe harm to the central nervous system (CNS) and permanent adverse changes to some organs. Therefore, numerous antiepileptic drugs (AEDs<b>)</b> are frequently used to control and treat the frequency of seizures. Since clinical effects and plasma concentration are directly correlated, determining AED levels in various samples has drawn a lot of interest in the optimization of drug doses. In the past several years, various generations of AEDs have appeared, and a variety of techniques have been widely used to analyze AEDs, including HPLC, chromatography, spectrometry, and electrochemical methods such as voltammetric, potentiometric, and others that can help in the analysis of these drugs because of their special benefits, which include quick analysis, high sensitivity, high selectivity, low cost, and dependable results. For the first time, this review article details the most recent advancements in the electrochemical measurement techniques used in the analysis of some of the most effective drugs in the three generations of AEDs in various samples using diverse electrode types, including glassy carbon electrodes (GCE), gold electrodes, pencil graphite electrodes (PGE), and other types. In addition to summarizing their mode of action and side effects. Finally, we will present the prospects for the development of electrochemical platforms for the determination of the next generation of AEDs.</p>","PeriodicalId":10744,"journal":{"name":"Critical reviews in analytical chemistry","volume":" ","pages":"1-18"},"PeriodicalIF":4.2,"publicationDate":"2025-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142930842","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advances in Heavy Metal Sensing: Utilizing Immobilized Chromogenic Reagents, Nanomaterials Perovskite and Nanonzymes.
IF 4.2 2区 化学 Q1 CHEMISTRY, ANALYTICAL Pub Date : 2025-01-05 DOI: 10.1080/10408347.2024.2440697
Sylvanus Bisaba Ruvubu, Indrajit Roy

Heavy metal pollution is a major environmental and health problem due to the toxicity and persistence of metals such as lead, mercury, cadmium, and arsenic in water, soil, and air. Advances in sensor technology have significantly improved the detection and quantification of heavy metals, providing real-time monitoring and mitigation tools. This review explores recent developments in heavy metal detection, focusing on innovative uses of immobilized chromogenic reagents, nanomaterials, perovskites, and nanozymes. Immobilized chromogenic reagents, with their high specificity and visual detection capabilities, provide cost effective solutions for heavy metal detection. Techniques to improve their stability and sensitivity, including surface modifications and hybrid materials, are discussed. Nanomaterials, including quantum dots, metal-organic frameworks, and carbon-based nanostructures, have emerged as versatile platforms due to their unique physicochemical properties. These materials enable highly sensitive and selective sensing mechanisms, such as fluorescence quenching and electrochemical sensing. Perovskites, a class of materials known for their tunable optoelectronic properties, have shown great promise in the optical and electrochemical detection of heavy metals. Despite challenges related to stability and environmental safety, their potential for low-cost and scalable applications is remarkable. Nanozymes, synthetic enzyme mimics, offer robust and catalytic sensing capabilities, particularly in colorimetric and electrochemical analyses. Their superior stability and reusability compared to natural enzymes make them ideal candidates for environmental monitoring. This review provides a comparative analysis of these techniques, highlighting their strengths, limitations, and real-world applicability. Emerging trends include hybrid systems that combine the benefits of multiple approaches. The discussion concludes by addressing current challenges and providing perspectives on future directions for advancing heavy metal detection technologies to improve environmental health and safety. Integrating chromogenic reagents with perovskite materials represents a promising direction for developing robust, sensitive, and easy-to-use sensors for health and environmental safety monitoring.

{"title":"Advances in Heavy Metal Sensing: Utilizing Immobilized Chromogenic Reagents, Nanomaterials Perovskite and Nanonzymes.","authors":"Sylvanus Bisaba Ruvubu, Indrajit Roy","doi":"10.1080/10408347.2024.2440697","DOIUrl":"https://doi.org/10.1080/10408347.2024.2440697","url":null,"abstract":"<p><p>Heavy metal pollution is a major environmental and health problem due to the toxicity and persistence of metals such as lead, mercury, cadmium, and arsenic in water, soil, and air. Advances in sensor technology have significantly improved the detection and quantification of heavy metals, providing real-time monitoring and mitigation tools. This review explores recent developments in heavy metal detection, focusing on innovative uses of immobilized chromogenic reagents, nanomaterials, perovskites, and nanozymes. Immobilized chromogenic reagents, with their high specificity and visual detection capabilities, provide cost effective solutions for heavy metal detection. Techniques to improve their stability and sensitivity, including surface modifications and hybrid materials, are discussed. Nanomaterials, including quantum dots, metal-organic frameworks, and carbon-based nanostructures, have emerged as versatile platforms due to their unique physicochemical properties. These materials enable highly sensitive and selective sensing mechanisms, such as fluorescence quenching and electrochemical sensing. Perovskites, a class of materials known for their tunable optoelectronic properties, have shown great promise in the optical and electrochemical detection of heavy metals. Despite challenges related to stability and environmental safety, their potential for low-cost and scalable applications is remarkable. Nanozymes, synthetic enzyme mimics, offer robust and catalytic sensing capabilities, particularly in colorimetric and electrochemical analyses. Their superior stability and reusability compared to natural enzymes make them ideal candidates for environmental monitoring. This review provides a comparative analysis of these techniques, highlighting their strengths, limitations, and real-world applicability. Emerging trends include hybrid systems that combine the benefits of multiple approaches. The discussion concludes by addressing current challenges and providing perspectives on future directions for advancing heavy metal detection technologies to improve environmental health and safety. Integrating chromogenic reagents with perovskite materials represents a promising direction for developing robust, sensitive, and easy-to-use sensors for health and environmental safety monitoring.</p>","PeriodicalId":10744,"journal":{"name":"Critical reviews in analytical chemistry","volume":" ","pages":"1-28"},"PeriodicalIF":4.2,"publicationDate":"2025-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142930843","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent Approaches for Analytical Characterization of Phospholipids in Food Matrices. Is the Phospholipid Fraction Exploited in the Authentication of Food Lipids? 食品基质中磷脂分析表征的最新方法。磷脂组分在食品油脂鉴定中有应用吗?
IF 4.2 2区 化学 Q1 CHEMISTRY, ANALYTICAL Pub Date : 2025-01-01 Epub Date: 2023-10-08 DOI: 10.1080/10408347.2023.2264981
Rosalía López-Ruiz, Ana M Jimenez-Carvelo, Luis Cuadros-Rodríguez

Phospholipids (PhLs) are essential components of cell membranes, characterized by a hydrophobic tail and a hydrophilic headgroup. They play several roles in biological systems, including energy storage, protection, and antioxidant properties. PhLs are found naturally in foods such as egg yolks, milk, or vegetable oils. The composition and concentration of PhLs observed in these foods vary according to the analytical methodology applied, mainly in the extraction and sample treatment process. Analytical targeted approaches for characterized PhLs involve liquid chromatography and mass spectrometry techniques. These methods provide insights into the composition and content of PhLs in food matrices. However, there is limited research on using PhL profiles for food quality evaluation and authentication purposes. Untargeted approaches, such as fingerprinting, have the potential to assess the authenticity of food products by capturing analytical signals linked to the PhL fraction. This review focusses on recent analytical strategies used in characterizing PhLs in distinctive foodstuffs (eggs, milk, and vegetable oils). It discusses sample preparation, analytical separation, and detection techniques. The review also highlights the potential of multivariate approaches to incorporate information on PhL composition to assess the authenticity of food products, an area that has been largely overlooked in previous studies.

磷脂(PhL)是细胞膜的重要组成部分,其特征是具有疏水性的尾部和亲水性的头部。它们在生物系统中发挥着多种作用,包括能量储存、保护和抗氧化特性。PhL天然存在于蛋黄、牛奶或植物油等食物中。在这些食品中观察到的PhL的组成和浓度因所应用的分析方法而异,主要是在提取和样品处理过程中。表征PhL的分析靶向方法包括液相色谱和质谱技术。这些方法为食品基质中PhL的组成和含量提供了见解。然而,将PhL档案用于食品质量评估和认证目的的研究有限。指纹识别等非目标方法有可能通过捕捉与PhL部分相关的分析信号来评估食品的真实性。这篇综述的重点是最近用于表征独特食品(鸡蛋、牛奶和植物油)中PhL的分析策略。它讨论了样品制备、分析分离和检测技术。该综述还强调了多元方法的潜力,该方法可以结合PhL成分信息来评估食品的真实性,这一领域在以前的研究中基本上被忽视了。
{"title":"Recent Approaches for Analytical Characterization of Phospholipids in Food Matrices. Is the Phospholipid Fraction Exploited in the Authentication of Food Lipids?","authors":"Rosalía López-Ruiz, Ana M Jimenez-Carvelo, Luis Cuadros-Rodríguez","doi":"10.1080/10408347.2023.2264981","DOIUrl":"10.1080/10408347.2023.2264981","url":null,"abstract":"<p><p>Phospholipids (PhLs) are essential components of cell membranes, characterized by a hydrophobic tail and a hydrophilic headgroup. They play several roles in biological systems, including energy storage, protection, and antioxidant properties. PhLs are found naturally in foods such as egg yolks, milk, or vegetable oils. The composition and concentration of PhLs observed in these foods vary according to the analytical methodology applied, mainly in the extraction and sample treatment process. Analytical targeted approaches for characterized PhLs involve liquid chromatography and mass spectrometry techniques. These methods provide insights into the composition and content of PhLs in food matrices. However, there is limited research on using PhL profiles for food quality evaluation and authentication purposes. Untargeted approaches, such as fingerprinting, have the potential to assess the authenticity of food products by capturing analytical signals linked to the PhL fraction. This review focusses on recent analytical strategies used in characterizing PhLs in distinctive foodstuffs (eggs, milk, and vegetable oils). It discusses sample preparation, analytical separation, and detection techniques. The review also highlights the potential of multivariate approaches to incorporate information on PhL composition to assess the authenticity of food products, an area that has been largely overlooked in previous studies.</p>","PeriodicalId":10744,"journal":{"name":"Critical reviews in analytical chemistry","volume":" ","pages":"99-108"},"PeriodicalIF":4.2,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41127224","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mass Spectrometry Based on Chemical Derivatization Has Brought Novel Discoveries to Lipidomics: A Comprehensive Review. 基于化学衍生的质谱法给脂质组学带来了新的发现:综述。
IF 4.2 2区 化学 Q1 CHEMISTRY, ANALYTICAL Pub Date : 2025-01-01 Epub Date: 2023-10-02 DOI: 10.1080/10408347.2023.2261130
Dan Wang, Huaming Xiao, Xin Lv, Hong Chen, Fang Wei

Lipids, as one of the most important organic compounds in organisms, are important components of cells and participate in energy storage and signal transduction of living organisms. As a rapidly rising field, lipidomics research involves the identification and quantification of multiple classes of lipid molecules, as well as the structure, function, dynamics, and interactions of lipids in living organisms. Due to its inherent high selectivity and high sensitivity, mass spectrometry (MS) is the "gold standard" analysis technique for small molecules in biological samples. The combination chemical derivatization with MS detection is a unique strategy that could improve MS ionization efficiency, facilitate structure identification and quantitative analysis. Herein, this review discusses derivatization-based MS strategies for lipidomic analysis over the past decade and focuses on all the reported lipid categories, including fatty acids and modified fatty acids, glycerolipids, glycerophospholipids, sterols and saccharolipids. The functional groups of lipids mainly involved in chemical derivatization include the C=C group, carboxyl group, hydroxyl group, amino group, carbonyl group. Furthermore, representative applications of these derivatization-based lipid profiling methods were summarized. Finally, challenges and countermeasures of lipid derivatization are mentioned and highlighted to guide future studies of derivatization-based MS strategy in lipidomics.

脂质是生物体内最重要的有机化合物之一,是细胞的重要组成部分,参与生物体的能量储存和信号转导。作为一个快速发展的领域,脂质组学研究涉及多类脂质分子的识别和定量,以及脂质在生物体中的结构、功能、动力学和相互作用。由于其固有的高选择性和高灵敏度,质谱法是生物样品中小分子的“金标准”分析技术。将化学衍生化与质谱检测相结合是一种独特的策略,可以提高质谱的电离效率,促进结构鉴定和定量分析。在此,这篇综述讨论了过去十年中用于脂质组学分析的基于衍生化的MS策略,并重点讨论了所有已报道的脂质类别,包括脂肪酸和修饰脂肪酸、甘油磷脂、甘油磷脂和甾醇。主要参与化学衍生的脂质官能团包括C=C基团、羧基、羟基、氨基、羰基。此外,总结了这些基于衍生化的脂质分析方法的代表性应用。最后,提出并强调了脂质衍生化的挑战和对策,以指导脂质组学中基于衍生化的MS策略的未来研究。
{"title":"Mass Spectrometry Based on Chemical Derivatization Has Brought Novel Discoveries to Lipidomics: A Comprehensive Review.","authors":"Dan Wang, Huaming Xiao, Xin Lv, Hong Chen, Fang Wei","doi":"10.1080/10408347.2023.2261130","DOIUrl":"10.1080/10408347.2023.2261130","url":null,"abstract":"<p><p>Lipids, as one of the most important organic compounds in organisms, are important components of cells and participate in energy storage and signal transduction of living organisms. As a rapidly rising field, lipidomics research involves the identification and quantification of multiple classes of lipid molecules, as well as the structure, function, dynamics, and interactions of lipids in living organisms. Due to its inherent high selectivity and high sensitivity, mass spectrometry (MS) is the \"gold standard\" analysis technique for small molecules in biological samples. The combination chemical derivatization with MS detection is a unique strategy that could improve MS ionization efficiency, facilitate structure identification and quantitative analysis. Herein, this review discusses derivatization-based MS strategies for lipidomic analysis over the past decade and focuses on all the reported lipid categories, including fatty acids and modified fatty acids, glycerolipids, glycerophospholipids, sterols and saccharolipids. The functional groups of lipids mainly involved in chemical derivatization include the C=C group, carboxyl group, hydroxyl group, amino group, carbonyl group. Furthermore, representative applications of these derivatization-based lipid profiling methods were summarized. Finally, challenges and countermeasures of lipid derivatization are mentioned and highlighted to guide future studies of derivatization-based MS strategy in lipidomics.</p>","PeriodicalId":10744,"journal":{"name":"Critical reviews in analytical chemistry","volume":" ","pages":"21-52"},"PeriodicalIF":4.2,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41127223","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Critical reviews in analytical chemistry
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1