Serum LDL Promotes Microglial Activation and Exacerbates Demyelinating Injury in Neuromyelitis Optica Spectrum Disorder.

IF 5.9 2区 医学 Q1 NEUROSCIENCES Neuroscience bulletin Pub Date : 2024-08-01 Epub Date: 2024-01-16 DOI:10.1007/s12264-023-01166-y
Man Chen, Yun-Hui Chu, Wen-Xiang Yu, Yun-Fan You, Yue Tang, Xiao-Wei Pang, Hang Zhang, Ke Shang, Gang Deng, Luo-Qi Zhou, Sheng Yang, Wei Wang, Jun Xiao, Dai-Shi Tian, Chuan Qin
{"title":"Serum LDL Promotes Microglial Activation and Exacerbates Demyelinating Injury in Neuromyelitis Optica Spectrum Disorder.","authors":"Man Chen, Yun-Hui Chu, Wen-Xiang Yu, Yun-Fan You, Yue Tang, Xiao-Wei Pang, Hang Zhang, Ke Shang, Gang Deng, Luo-Qi Zhou, Sheng Yang, Wei Wang, Jun Xiao, Dai-Shi Tian, Chuan Qin","doi":"10.1007/s12264-023-01166-y","DOIUrl":null,"url":null,"abstract":"<p><p>Neuromyelitis optica spectrum disorder (NMOSD) is an autoimmune inflammatory demyelinating disease of the central nervous system (CNS) accompanied by blood-brain barrier (BBB) disruption. Dysfunction in microglial lipid metabolism is believed to be closely associated with the neuropathology of NMOSD. However, there is limited evidence on the functional relevance of circulating lipids in CNS demyelination, cellular metabolism, and microglial function. Here, we found that serum low-density lipoprotein (LDL) was positively correlated with markers of neurological damage in NMOSD patients. In addition, we demonstrated in a mouse model of NMOSD that LDL penetrates the CNS through the leaky BBB, directly activating microglia. This activation leads to excessive phagocytosis of myelin debris, inhibition of lipid metabolism, and increased glycolysis, ultimately exacerbating myelin damage. We also found that therapeutic interventions aimed at reducing circulating LDL effectively reversed the lipid metabolic dysfunction in microglia and mitigated the demyelinating injury in NMOSD. These findings shed light on the molecular and cellular mechanisms underlying the positive correlation between serum LDL and neurological damage, highlighting the potential therapeutic target for lowering circulating lipids to alleviate the acute demyelinating injury in NMOSD.</p>","PeriodicalId":19314,"journal":{"name":"Neuroscience bulletin","volume":" ","pages":"1104-1114"},"PeriodicalIF":5.9000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11306683/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience bulletin","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12264-023-01166-y","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/16 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Neuromyelitis optica spectrum disorder (NMOSD) is an autoimmune inflammatory demyelinating disease of the central nervous system (CNS) accompanied by blood-brain barrier (BBB) disruption. Dysfunction in microglial lipid metabolism is believed to be closely associated with the neuropathology of NMOSD. However, there is limited evidence on the functional relevance of circulating lipids in CNS demyelination, cellular metabolism, and microglial function. Here, we found that serum low-density lipoprotein (LDL) was positively correlated with markers of neurological damage in NMOSD patients. In addition, we demonstrated in a mouse model of NMOSD that LDL penetrates the CNS through the leaky BBB, directly activating microglia. This activation leads to excessive phagocytosis of myelin debris, inhibition of lipid metabolism, and increased glycolysis, ultimately exacerbating myelin damage. We also found that therapeutic interventions aimed at reducing circulating LDL effectively reversed the lipid metabolic dysfunction in microglia and mitigated the demyelinating injury in NMOSD. These findings shed light on the molecular and cellular mechanisms underlying the positive correlation between serum LDL and neurological damage, highlighting the potential therapeutic target for lowering circulating lipids to alleviate the acute demyelinating injury in NMOSD.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
血清低密度脂蛋白促进小胶质细胞活化并加剧神经脊髓炎谱系障碍的脱髓鞘损伤
神经脊髓炎视网膜谱系障碍(NMOSD)是一种伴有血脑屏障(BBB)破坏的中枢神经系统(CNS)自身免疫性炎症性脱髓鞘疾病。小胶质细胞脂质代谢功能障碍被认为与 NMOSD 的神经病理学密切相关。然而,关于循环脂质在中枢神经系统脱髓鞘、细胞代谢和小胶质细胞功能中的功能相关性的证据却很有限。在这里,我们发现血清低密度脂蛋白(LDL)与 NMOSD 患者的神经损伤指标呈正相关。此外,我们还在一个 NMOSD 小鼠模型中证实,低密度脂蛋白通过渗漏的 BBB 穿透中枢神经系统,直接激活小胶质细胞。这种激活会导致过度吞噬髓鞘碎片、抑制脂质代谢和增加糖酵解,最终加剧髓鞘损伤。我们还发现,旨在减少循环低密度脂蛋白的治疗干预措施可有效逆转小胶质细胞的脂质代谢功能障碍,并减轻 NMOSD 的脱髓鞘损伤。这些发现揭示了血清低密度脂蛋白与神经损伤之间正相关的分子和细胞机制,突出了降低循环血脂以减轻 NMOSD 急性脱髓鞘损伤的潜在治疗目标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Neuroscience bulletin
Neuroscience bulletin NEUROSCIENCES-
CiteScore
7.20
自引率
16.10%
发文量
163
审稿时长
6-12 weeks
期刊介绍: Neuroscience Bulletin (NB), the official journal of the Chinese Neuroscience Society, is published monthly by Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS) and Springer. NB aims to publish research advances in the field of neuroscience and promote exchange of scientific ideas within the community. The journal publishes original papers on various topics in neuroscience and focuses on potential disease implications on the nervous system. NB welcomes research contributions on molecular, cellular, or developmental neuroscience using multidisciplinary approaches and functional strategies. We feature full-length original articles, reviews, methods, letters to the editor, insights, and research highlights. As the official journal of the Chinese Neuroscience Society, which currently has more than 12,000 members in China, NB is devoted to facilitating communications between Chinese neuroscientists and their international colleagues. The journal is recognized as the most influential publication in neuroscience research in China.
期刊最新文献
A Method for Detecting Depression in Adolescence Based on an Affective Brain-Computer Interface and Resting-State Electroencephalogram Signals. IsoVISoR: Towards 3D Mesoscale Brain Mapping of Large Mammals at Isotropic Sub-micron Resolution. Special Issue Celebrating the 25th Anniversary of the Institute of Neuroscience, CAS. Glutamatergic Circuits in the Pedunculopontine Nucleus Modulate Multiple Motor Functions. Sonic Hedgehog Mediates High Frequency-Dependent Deep Brain Stimulation for the Correction of Motor Deficits in a Parkinson's Disease Model.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1