首页 > 最新文献

Neuroscience bulletin最新文献

英文 中文
Non-invasive Modulation of Deep Brain Nuclei by Temporal Interference Stimulation.
IF 5.9 2区 医学 Q1 NEUROSCIENCES Pub Date : 2025-02-08 DOI: 10.1007/s12264-025-01359-7
Long Li, Hao Bai, Linyan Wu, Liang Zheng, Liang Huang, Yang Li, Wenlong Zhang, Jue Wang, Shunnan Ge, Yan Qu, Tian Liu

Temporal interference (TI) is a form of stimulation that epitomizes an innovative and non-invasive approach for profound neuromodulation of the brain, a technique that has been validated in mice. Yet, the thin cranial bone structure of mice has a marginal influence on the effect of the TI technique and may not effectively showcase its effectiveness in larger animals. Based on this, we carried out TI stimulation experiments on rats. Following the TI intervention, analysis of electrophysiological data and immunofluorescence staining indicated the generation of a stimulation focus within the nucleus accumbens (depth, 8.5 mm) in rats. Our findings affirm the viability of the TI methodology in the presence of thick cranial bones, furnishing efficacious parameters for profound stimulation with TI administered under such conditions. This experiment not only sheds light on the intervention effects of TI deep in the brain but also furnishes robust evidence in support of its prospective clinical utility.

{"title":"Non-invasive Modulation of Deep Brain Nuclei by Temporal Interference Stimulation.","authors":"Long Li, Hao Bai, Linyan Wu, Liang Zheng, Liang Huang, Yang Li, Wenlong Zhang, Jue Wang, Shunnan Ge, Yan Qu, Tian Liu","doi":"10.1007/s12264-025-01359-7","DOIUrl":"https://doi.org/10.1007/s12264-025-01359-7","url":null,"abstract":"<p><p>Temporal interference (TI) is a form of stimulation that epitomizes an innovative and non-invasive approach for profound neuromodulation of the brain, a technique that has been validated in mice. Yet, the thin cranial bone structure of mice has a marginal influence on the effect of the TI technique and may not effectively showcase its effectiveness in larger animals. Based on this, we carried out TI stimulation experiments on rats. Following the TI intervention, analysis of electrophysiological data and immunofluorescence staining indicated the generation of a stimulation focus within the nucleus accumbens (depth, 8.5 mm) in rats. Our findings affirm the viability of the TI methodology in the presence of thick cranial bones, furnishing efficacious parameters for profound stimulation with TI administered under such conditions. This experiment not only sheds light on the intervention effects of TI deep in the brain but also furnishes robust evidence in support of its prospective clinical utility.</p>","PeriodicalId":19314,"journal":{"name":"Neuroscience bulletin","volume":" ","pages":""},"PeriodicalIF":5.9,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143370810","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dysregulated Pathways During Pregnancy Predict Drug Candidates in Neurodevelopmental Disorders.
IF 5.9 2区 医学 Q1 NEUROSCIENCES Pub Date : 2025-02-06 DOI: 10.1007/s12264-025-01360-0
Huamin Yin, Zhendong Wang, Wenhang Wang, Jiaxin Liu, Yirui Xue, Li Liu, Jingling Shen, Lian Duan

Maternal health during pregnancy has a direct impact on the risk and severity of neurodevelopmental disorders (NDDs) in the offspring, especially in the case of drug exposure. However, little progress has been made to assess the risk of drug exposure during pregnancy due to ethical constraints and drug use factors. We collected and manually curated sub-pathways and pathways (sub-/pathways) and drug information to propose an analytical framework for predicting drug candidates. This framework linked sub-/pathway activity and drug response scores derived from gene transcription data and was applied to human fetal brain development and six NDDs. Further, specific and pleiotropic sub-/pathways/drugs were identified using entropy, and sex bias was analyzed in conjunction with logistic regression and random forest models. We identified 19 disorder-associated and 256 regionally pleiotropic and specific candidate drugs that targeted risk sub-/pathways in NDDs, showing temporal or spatial changes across fetal development. Moreover, 5443 differential drug-sub-/pathways exhibited sex-biased differences after filling in the gender labels. A user-friendly NDDP visualization website ( https://ndd-lab.shinyapps.io/NDDP ) was developed to allow researchers and clinicians to access and retrieve data easily. Our framework overcame data gaps and identified numerous pleiotropic and specific candidates across six disorders and fetal developmental trajectories. This could significantly contribute to drug discovery during pregnancy and can be applied to a wide range of traits.

{"title":"Dysregulated Pathways During Pregnancy Predict Drug Candidates in Neurodevelopmental Disorders.","authors":"Huamin Yin, Zhendong Wang, Wenhang Wang, Jiaxin Liu, Yirui Xue, Li Liu, Jingling Shen, Lian Duan","doi":"10.1007/s12264-025-01360-0","DOIUrl":"https://doi.org/10.1007/s12264-025-01360-0","url":null,"abstract":"<p><p>Maternal health during pregnancy has a direct impact on the risk and severity of neurodevelopmental disorders (NDDs) in the offspring, especially in the case of drug exposure. However, little progress has been made to assess the risk of drug exposure during pregnancy due to ethical constraints and drug use factors. We collected and manually curated sub-pathways and pathways (sub-/pathways) and drug information to propose an analytical framework for predicting drug candidates. This framework linked sub-/pathway activity and drug response scores derived from gene transcription data and was applied to human fetal brain development and six NDDs. Further, specific and pleiotropic sub-/pathways/drugs were identified using entropy, and sex bias was analyzed in conjunction with logistic regression and random forest models. We identified 19 disorder-associated and 256 regionally pleiotropic and specific candidate drugs that targeted risk sub-/pathways in NDDs, showing temporal or spatial changes across fetal development. Moreover, 5443 differential drug-sub-/pathways exhibited sex-biased differences after filling in the gender labels. A user-friendly NDDP visualization website ( https://ndd-lab.shinyapps.io/NDDP ) was developed to allow researchers and clinicians to access and retrieve data easily. Our framework overcame data gaps and identified numerous pleiotropic and specific candidates across six disorders and fetal developmental trajectories. This could significantly contribute to drug discovery during pregnancy and can be applied to a wide range of traits.</p>","PeriodicalId":19314,"journal":{"name":"Neuroscience bulletin","volume":" ","pages":""},"PeriodicalIF":5.9,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143256184","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Triple-Target Inhibition of Cholinesterase, Amyloid Aggregation, and GSK3β to Ameliorate Cognitive Deficits and Neuropathology in the Triple-Transgenic Mouse Model of Alzheimer's Disease.
IF 5.9 2区 医学 Q1 NEUROSCIENCES Pub Date : 2025-02-05 DOI: 10.1007/s12264-025-01354-y
Junqiu He, Shan Sun, Hongfeng Wang, Zheng Ying, Kin Yip Tam

Alzheimer's disease (AD) poses one of the most urgent medical challenges in the 21st century as it affects millions of people. Unfortunately, the etiopathogenesis of AD is not yet fully understood and the current pharmacotherapy options are somewhat limited. Here, we report a novel inhibitor, Compound 44, for targeting cholinesterases, amyloid-β (Aβ) aggregation, and glycogen synthase kinase 3β (GSK-3β) simultaneously with the aim of achieving symptomatic relief and disease modification in AD therapy. We found that Compound 44 had good inhibitory effects on all intended targets with IC50s of submicromolar or better, significant neuroprotective effects in cell models, and beneficial improvement of cognitive deficits in the triple transgenic AD (3 × Tg AD) mouse model. Moreover, we showed that Compound 44 acts as an autophagy regulator by inducing nuclear translocation of transcription factor EB through GSK-3β inhibition, enhancing the biogenesis of lysosomes and elevating autophagic flux, thus ameliorating the amyloid burden and tauopathy, as well as mitigating the disease phenotype. Our results suggest that triple-target inhibition via Compound 44 could be a promising strategy that may lead to the development of effective therapeutic approaches for AD.

{"title":"Triple-Target Inhibition of Cholinesterase, Amyloid Aggregation, and GSK3β to Ameliorate Cognitive Deficits and Neuropathology in the Triple-Transgenic Mouse Model of Alzheimer's Disease.","authors":"Junqiu He, Shan Sun, Hongfeng Wang, Zheng Ying, Kin Yip Tam","doi":"10.1007/s12264-025-01354-y","DOIUrl":"https://doi.org/10.1007/s12264-025-01354-y","url":null,"abstract":"<p><p>Alzheimer's disease (AD) poses one of the most urgent medical challenges in the 21st century as it affects millions of people. Unfortunately, the etiopathogenesis of AD is not yet fully understood and the current pharmacotherapy options are somewhat limited. Here, we report a novel inhibitor, Compound 44, for targeting cholinesterases, amyloid-β (Aβ) aggregation, and glycogen synthase kinase 3β (GSK-3β) simultaneously with the aim of achieving symptomatic relief and disease modification in AD therapy. We found that Compound 44 had good inhibitory effects on all intended targets with IC<sub>50</sub>s of submicromolar or better, significant neuroprotective effects in cell models, and beneficial improvement of cognitive deficits in the triple transgenic AD (3 × Tg AD) mouse model. Moreover, we showed that Compound 44 acts as an autophagy regulator by inducing nuclear translocation of transcription factor EB through GSK-3β inhibition, enhancing the biogenesis of lysosomes and elevating autophagic flux, thus ameliorating the amyloid burden and tauopathy, as well as mitigating the disease phenotype. Our results suggest that triple-target inhibition via Compound 44 could be a promising strategy that may lead to the development of effective therapeutic approaches for AD.</p>","PeriodicalId":19314,"journal":{"name":"Neuroscience bulletin","volume":" ","pages":""},"PeriodicalIF":5.9,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143190067","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Behavioral Animal Models and Neural-Circuit Framework of Depressive Disorder. 抑郁症的行为动物模型和神经回路框架。
IF 5.9 2区 医学 Q1 NEUROSCIENCES Pub Date : 2025-02-01 Epub Date: 2024-08-09 DOI: 10.1007/s12264-024-01270-7
Xiangyun Tian, Scott J Russo, Long Li

Depressive disorder is a chronic, recurring, and potentially life-endangering neuropsychiatric disease. According to a report by the World Health Organization, the global population suffering from depression is experiencing a significant annual increase. Despite its prevalence and considerable impact on people, little is known about its pathogenesis. One major reason is the scarcity of reliable animal models due to the absence of consensus on the pathology and etiology of depression. Furthermore, the neural circuit mechanism of depression induced by various factors is particularly complex. Considering the variability in depressive behavior patterns and neurobiological mechanisms among different animal models of depression, a comparison between the neural circuits of depression induced by various factors is essential for its treatment. In this review, we mainly summarize the most widely used behavioral animal models and neural circuits under different triggers of depression, aiming to provide a theoretical basis for depression prevention.

抑郁症是一种慢性、反复发作、可能危及生命的神经精神疾病。根据世界卫生组织的一份报告,全球抑郁症患者人数每年都在大幅增加。尽管抑郁症很普遍,对人们的影响也很大,但人们对其发病机制却知之甚少。其中一个主要原因是,由于对抑郁症的病理和病因尚未达成共识,因此缺乏可靠的动物模型。此外,各种因素诱发抑郁症的神经回路机制尤为复杂。考虑到不同抑郁症动物模型在抑郁行为模式和神经生物学机制上的差异性,对不同因素诱导的抑郁症神经回路进行比较对于抑郁症的治疗至关重要。在这篇综述中,我们主要总结了最广泛应用的行为动物模型和不同诱因下的神经回路,旨在为抑郁症的预防提供理论依据。
{"title":"Behavioral Animal Models and Neural-Circuit Framework of Depressive Disorder.","authors":"Xiangyun Tian, Scott J Russo, Long Li","doi":"10.1007/s12264-024-01270-7","DOIUrl":"10.1007/s12264-024-01270-7","url":null,"abstract":"<p><p>Depressive disorder is a chronic, recurring, and potentially life-endangering neuropsychiatric disease. According to a report by the World Health Organization, the global population suffering from depression is experiencing a significant annual increase. Despite its prevalence and considerable impact on people, little is known about its pathogenesis. One major reason is the scarcity of reliable animal models due to the absence of consensus on the pathology and etiology of depression. Furthermore, the neural circuit mechanism of depression induced by various factors is particularly complex. Considering the variability in depressive behavior patterns and neurobiological mechanisms among different animal models of depression, a comparison between the neural circuits of depression induced by various factors is essential for its treatment. In this review, we mainly summarize the most widely used behavioral animal models and neural circuits under different triggers of depression, aiming to provide a theoretical basis for depression prevention.</p>","PeriodicalId":19314,"journal":{"name":"Neuroscience bulletin","volume":" ","pages":"272-288"},"PeriodicalIF":5.9,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11794861/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141907289","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dynamic Routing of Theta-Frequency Synchrony in the Amygdalo-Hippocampal-Entorhinal Circuit Coordinates Retrieval of Competing Memories.
IF 5.9 2区 医学 Q1 NEUROSCIENCES Pub Date : 2025-02-01 DOI: 10.1007/s12264-025-01356-w
Jiahua Zheng, Yiqi Sun, Fuhai Wang, Zhongyu Xie, Qianyun Wang, Jian-Ya Peng, Jianguang Ni
{"title":"Dynamic Routing of Theta-Frequency Synchrony in the Amygdalo-Hippocampal-Entorhinal Circuit Coordinates Retrieval of Competing Memories.","authors":"Jiahua Zheng, Yiqi Sun, Fuhai Wang, Zhongyu Xie, Qianyun Wang, Jian-Ya Peng, Jianguang Ni","doi":"10.1007/s12264-025-01356-w","DOIUrl":"https://doi.org/10.1007/s12264-025-01356-w","url":null,"abstract":"","PeriodicalId":19314,"journal":{"name":"Neuroscience bulletin","volume":" ","pages":""},"PeriodicalIF":5.9,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143074615","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Novel Astrocyte-Neuron Interaction to Control Complex Animal Behavior. 一种新的星形细胞-神经元相互作用控制复杂的动物行为。
IF 5.9 2区 医学 Q1 NEUROSCIENCES Pub Date : 2025-02-01 Epub Date: 2024-12-09 DOI: 10.1007/s12264-024-01328-6
Helmut Kettenmann
{"title":"A Novel Astrocyte-Neuron Interaction to Control Complex Animal Behavior.","authors":"Helmut Kettenmann","doi":"10.1007/s12264-024-01328-6","DOIUrl":"10.1007/s12264-024-01328-6","url":null,"abstract":"","PeriodicalId":19314,"journal":{"name":"Neuroscience bulletin","volume":" ","pages":"352-354"},"PeriodicalIF":5.9,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11794738/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142801811","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Neural Basis of Categorical Representations of Animal Body Silhouettes. 动物身体轮廓分类表征的神经基础
IF 5.9 2区 医学 Q1 NEUROSCIENCES Pub Date : 2025-02-01 Epub Date: 2024-07-26 DOI: 10.1007/s12264-024-01268-1
Yue Pu, Shihui Han

Neural activities differentiating bodies versus non-body stimuli have been identified in the occipitotemporal cortex of both humans and nonhuman primates. However, the neural mechanisms of coding the similarity of different individuals' bodies of the same species to support their categorical representations remain unclear. Using electroencephalography (EEG) and magnetoencephalography (MEG), we investigated the temporal and spatial characteristics of neural processes shared by different individual body silhouettes of the same species by quantifying the repetition suppression of neural responses to human and animal (chimpanzee, dog, and bird) body silhouettes showing different postures. Our EEG results revealed significant repetition suppression of the amplitudes of early frontal/central activity at 180-220 ms (P2) and late occipitoparietal activity at 220-320 ms (P270) in response to animal (but not human) body silhouettes of the same species. Our MEG results further localized the repetition suppression effect related to animal body silhouettes in the left supramarginal gyrus and left frontal cortex at 200-440 ms after stimulus onset. Our findings suggest two neural processes that are involved in spontaneous categorical representations of animal body silhouettes as a cognitive basis of human-animal interactions.

在人类和非人类灵长类动物的枕颞皮层中都发现了区分身体与非身体刺激的神经活动。然而,对同一物种不同个体身体的相似性进行编码以支持其分类表征的神经机制仍不清楚。我们利用脑电图(EEG)和脑磁图(MEG),通过量化神经对人类和动物(黑猩猩、狗和鸟类)不同姿态身体轮廓的重复抑制,研究了同一物种不同个体身体轮廓所共有的神经过程的时间和空间特征。我们的脑电图结果显示,在对同一物种的动物(而非人类)身体轮廓做出反应时,180-220 毫秒(P2)处的额叶/中枢早期活动和 220-320 毫秒(P270)处的枕顶叶晚期活动的振幅会受到明显的重复抑制。我们的 MEG 结果进一步将与动物身体轮廓有关的重复抑制效应定位在刺激开始后 200-440 毫秒的左侧边际上回和左侧额叶皮层。我们的研究结果表明,有两个神经过程参与了动物身体轮廓的自发分类表征,这是人兽互动的认知基础。
{"title":"Neural Basis of Categorical Representations of Animal Body Silhouettes.","authors":"Yue Pu, Shihui Han","doi":"10.1007/s12264-024-01268-1","DOIUrl":"10.1007/s12264-024-01268-1","url":null,"abstract":"<p><p>Neural activities differentiating bodies versus non-body stimuli have been identified in the occipitotemporal cortex of both humans and nonhuman primates. However, the neural mechanisms of coding the similarity of different individuals' bodies of the same species to support their categorical representations remain unclear. Using electroencephalography (EEG) and magnetoencephalography (MEG), we investigated the temporal and spatial characteristics of neural processes shared by different individual body silhouettes of the same species by quantifying the repetition suppression of neural responses to human and animal (chimpanzee, dog, and bird) body silhouettes showing different postures. Our EEG results revealed significant repetition suppression of the amplitudes of early frontal/central activity at 180-220 ms (P2) and late occipitoparietal activity at 220-320 ms (P270) in response to animal (but not human) body silhouettes of the same species. Our MEG results further localized the repetition suppression effect related to animal body silhouettes in the left supramarginal gyrus and left frontal cortex at 200-440 ms after stimulus onset. Our findings suggest two neural processes that are involved in spontaneous categorical representations of animal body silhouettes as a cognitive basis of human-animal interactions.</p>","PeriodicalId":19314,"journal":{"name":"Neuroscience bulletin","volume":" ","pages":"211-223"},"PeriodicalIF":5.9,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11794784/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141766890","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Early Postnatal Pharmacological Intervention Rescues the Disruption of Developmental Connectivity in MAO-A KO Mice. 产后早期药物干预可挽救 MAO-A KO 小鼠发育连通性的破坏
IF 5.9 2区 医学 Q1 NEUROSCIENCES Pub Date : 2025-02-01 Epub Date: 2024-10-24 DOI: 10.1007/s12264-024-01304-0
Qian Xue, Hanpeng Xu, Muye Zhu, Bin Qian, Lei Gao, Lin Gou, Houri Hintiryan, Jean C Shih, Hong-Wei Dong
{"title":"Early Postnatal Pharmacological Intervention Rescues the Disruption of Developmental Connectivity in MAO-A KO Mice.","authors":"Qian Xue, Hanpeng Xu, Muye Zhu, Bin Qian, Lei Gao, Lin Gou, Houri Hintiryan, Jean C Shih, Hong-Wei Dong","doi":"10.1007/s12264-024-01304-0","DOIUrl":"10.1007/s12264-024-01304-0","url":null,"abstract":"","PeriodicalId":19314,"journal":{"name":"Neuroscience bulletin","volume":" ","pages":"339-343"},"PeriodicalIF":5.9,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11794938/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142504956","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IsoVISoR: Towards 3D Mesoscale Brain Mapping of Large Mammals at Isotropic Sub-micron Resolution. IsoVISoR:以各向同性亚微米分辨率绘制大型哺乳动物的三维中尺度脑图。
IF 5.9 2区 医学 Q1 NEUROSCIENCES Pub Date : 2025-02-01 Epub Date: 2024-11-16 DOI: 10.1007/s12264-024-01316-w
Chao-Yu Yang, Yan Shen, Xiaoyang Qi, Lufeng Ding, Yanyang Xiao, Qingyuan Zhu, Hao Wang, Cheng Xu, Pak-Ming Lau, Pengcheng Zhou, Fang Xu, Guo-Qiang Bi
{"title":"IsoVISoR: Towards 3D Mesoscale Brain Mapping of Large Mammals at Isotropic Sub-micron Resolution.","authors":"Chao-Yu Yang, Yan Shen, Xiaoyang Qi, Lufeng Ding, Yanyang Xiao, Qingyuan Zhu, Hao Wang, Cheng Xu, Pak-Ming Lau, Pengcheng Zhou, Fang Xu, Guo-Qiang Bi","doi":"10.1007/s12264-024-01316-w","DOIUrl":"10.1007/s12264-024-01316-w","url":null,"abstract":"","PeriodicalId":19314,"journal":{"name":"Neuroscience bulletin","volume":" ","pages":"344-348"},"PeriodicalIF":5.9,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11794729/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142644608","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Neurodegenerative Diseases: What Can Be Learned from Toothed Whales? 神经退行性疾病:从齿鲸身上能学到什么?
IF 5.9 2区 医学 Q1 NEUROSCIENCES Pub Date : 2025-02-01 Epub Date: 2024-11-01 DOI: 10.1007/s12264-024-01310-2
Simona Sacchini

Neurodegeneration involves a wide range of neuropathological alterations affecting the integrity, physiology, and architecture of neural cells. Many studies have demonstrated neurodegeneration in different animals. In the case of Alzheimer's disease (AD), spontaneous animal models should display two neurohistopathological hallmarks: the deposition of β-amyloid and the arrangement of neurofibrillary tangles. However, no natural animal models that fulfill these conditions have been reported and most research into AD has been performed using transgenic rodents. Recent studies have also demonstrated that toothed whales - homeothermic, long-lived, top predatory marine mammals - show neuropathological signs of AD-like pathology. The neuropathological hallmarks in these cetaceans could help to better understand their endangered health as well as neurodegenerative diseases in humans. This systematic review analyzes all the literature published to date on this trending topic and the proposed causes for neurodegeneration in these iconic marine mammals are approached in the context of One Health/Planetary Health and translational medicine.

神经退行性变涉及一系列影响神经细胞完整性、生理学和结构的神经病理学改变。许多研究都证明了不同动物的神经变性。就阿尔茨海默病(AD)而言,自发动物模型应显示两个神经组织病理学标志:β-淀粉样蛋白沉积和神经纤维缠结排列。然而,目前还没有符合这些条件的天然动物模型的报道,大多数有关注意力缺失症的研究都是通过转基因啮齿动物进行的。最近的研究还表明,齿鲸--同温、长寿、顶级掠食性海洋哺乳动物--表现出类似于注意力缺失症的神经病理学迹象。这些鲸目动物的神经病理学特征有助于更好地了解它们的濒危健康状况以及人类的神经退行性疾病。这篇系统性综述分析了迄今为止发表的有关这一趋势性主题的所有文献,并从 "一个健康"/"行星健康 "和转化医学的角度探讨了这些标志性海洋哺乳动物神经变性的原因。
{"title":"Neurodegenerative Diseases: What Can Be Learned from Toothed Whales?","authors":"Simona Sacchini","doi":"10.1007/s12264-024-01310-2","DOIUrl":"10.1007/s12264-024-01310-2","url":null,"abstract":"<p><p>Neurodegeneration involves a wide range of neuropathological alterations affecting the integrity, physiology, and architecture of neural cells. Many studies have demonstrated neurodegeneration in different animals. In the case of Alzheimer's disease (AD), spontaneous animal models should display two neurohistopathological hallmarks: the deposition of β-amyloid and the arrangement of neurofibrillary tangles. However, no natural animal models that fulfill these conditions have been reported and most research into AD has been performed using transgenic rodents. Recent studies have also demonstrated that toothed whales - homeothermic, long-lived, top predatory marine mammals - show neuropathological signs of AD-like pathology. The neuropathological hallmarks in these cetaceans could help to better understand their endangered health as well as neurodegenerative diseases in humans. This systematic review analyzes all the literature published to date on this trending topic and the proposed causes for neurodegeneration in these iconic marine mammals are approached in the context of One Health/Planetary Health and translational medicine.</p>","PeriodicalId":19314,"journal":{"name":"Neuroscience bulletin","volume":" ","pages":"326-338"},"PeriodicalIF":5.9,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11794736/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142562508","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Neuroscience bulletin
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1