首页 > 最新文献

Neuroscience bulletin最新文献

英文 中文
Astrocyte-Driven Modulation of Whole-Brain Functional Networks and BOLD Signals Revealed by Optogenetic-fMRI. 星形胶质细胞驱动的全脑功能网络和BOLD信号的调制
IF 5.8 2区 医学 Q1 NEUROSCIENCES Pub Date : 2026-02-11 DOI: 10.1007/s12264-026-01590-w
Zhuang Liu, Li Wang, Tiangang Lou, Ziyue Zhao, Hongying Du, Juxiang Chen, Hongchun Zeng, Jie Wang, Kun Wang

Astrocytes have long been considered passive players in brain function, yet emerging evidence suggests they actively modulate neural activity and signal transmission. This study combines chemogenetics and optogenetics approaches with functional magnetic resonance imaging (fMRI) to investigate the impact of astrocyte activation on local field potentials (LFPs) and downstream BOLD signals. Using a multimodal neuroimaging approach, we explore how astrocyte activation influences electrophysiological responses in different brain regions, particularly focusing on the prefrontal cortex (PFC) and its downstream targets. Our results reveal significant increases in LFP energy within specific frequency bands, such as Theta and Delta, in response to laser stimulation. These changes demonstrate the spatial specificity of astrocyte activity and its capacity to modulate local network dynamics. Furthermore, following chemogenetic inhibition of neuronal activity, optogenetic reactivation of astrocytes continued to evoke BOLD responses, supporting the notion that astrocytes have a pivotal role in the regulation of cerebral blood flow and metabolism. These findings challenge traditional views of BOLD signal origins and emphasize the need for a reevaluation of astrocyte involvement in neurovascular coupling. This study provides novel insights into astrocyte function, offering a new perspective on brain-wide connectivity and its implications for both normal brain function and neuropathological conditions.

长期以来,星形胶质细胞一直被认为是大脑功能的被动参与者,但新出现的证据表明,它们积极调节神经活动和信号传递。本研究将化学遗传学和光遗传学方法与功能磁共振成像(fMRI)相结合,研究星形胶质细胞激活对局部场电位(LFPs)和下游BOLD信号的影响。使用多模态神经成像方法,我们探索星形胶质细胞激活如何影响不同大脑区域的电生理反应,特别是关注前额叶皮层(PFC)及其下游目标。我们的研究结果显示,在特定频段内,如Theta和Delta, LFP能量显著增加,以响应激光刺激。这些变化表明星形胶质细胞活动的空间特异性及其调节局部网络动态的能力。此外,在化学发生抑制神经元活性之后,星形胶质细胞的光遗传再激活继续引起BOLD反应,支持星形胶质细胞在脑血流和代谢调节中起关键作用的观点。这些发现挑战了BOLD信号起源的传统观点,并强调需要重新评估星形胶质细胞参与神经血管耦合。这项研究为星形胶质细胞功能提供了新的见解,为全脑连接及其对正常脑功能和神经病理状况的影响提供了新的视角。
{"title":"Astrocyte-Driven Modulation of Whole-Brain Functional Networks and BOLD Signals Revealed by Optogenetic-fMRI.","authors":"Zhuang Liu, Li Wang, Tiangang Lou, Ziyue Zhao, Hongying Du, Juxiang Chen, Hongchun Zeng, Jie Wang, Kun Wang","doi":"10.1007/s12264-026-01590-w","DOIUrl":"https://doi.org/10.1007/s12264-026-01590-w","url":null,"abstract":"<p><p>Astrocytes have long been considered passive players in brain function, yet emerging evidence suggests they actively modulate neural activity and signal transmission. This study combines chemogenetics and optogenetics approaches with functional magnetic resonance imaging (fMRI) to investigate the impact of astrocyte activation on local field potentials (LFPs) and downstream BOLD signals. Using a multimodal neuroimaging approach, we explore how astrocyte activation influences electrophysiological responses in different brain regions, particularly focusing on the prefrontal cortex (PFC) and its downstream targets. Our results reveal significant increases in LFP energy within specific frequency bands, such as Theta and Delta, in response to laser stimulation. These changes demonstrate the spatial specificity of astrocyte activity and its capacity to modulate local network dynamics. Furthermore, following chemogenetic inhibition of neuronal activity, optogenetic reactivation of astrocytes continued to evoke BOLD responses, supporting the notion that astrocytes have a pivotal role in the regulation of cerebral blood flow and metabolism. These findings challenge traditional views of BOLD signal origins and emphasize the need for a reevaluation of astrocyte involvement in neurovascular coupling. This study provides novel insights into astrocyte function, offering a new perspective on brain-wide connectivity and its implications for both normal brain function and neuropathological conditions.</p>","PeriodicalId":19314,"journal":{"name":"Neuroscience bulletin","volume":" ","pages":""},"PeriodicalIF":5.8,"publicationDate":"2026-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146157532","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparison of Freeze-drying and Gradient Dehydration Treatment on X-ray Imaging for Three-dimensional Reconstruction of Early Human Embryonic Brain Samples. 冷冻干燥与梯度脱水处理对早期人类胚胎脑三维重建x射线成像的影响。
IF 5.8 2区 医学 Q1 NEUROSCIENCES Pub Date : 2026-02-09 DOI: 10.1007/s12264-026-01588-4
Yangqianbo Yao, Wenjie Hao, Shengju Wu, Qizhi He, Tiqiao Xiao, Zhijun Zhang
{"title":"Comparison of Freeze-drying and Gradient Dehydration Treatment on X-ray Imaging for Three-dimensional Reconstruction of Early Human Embryonic Brain Samples.","authors":"Yangqianbo Yao, Wenjie Hao, Shengju Wu, Qizhi He, Tiqiao Xiao, Zhijun Zhang","doi":"10.1007/s12264-026-01588-4","DOIUrl":"10.1007/s12264-026-01588-4","url":null,"abstract":"","PeriodicalId":19314,"journal":{"name":"Neuroscience bulletin","volume":" ","pages":""},"PeriodicalIF":5.8,"publicationDate":"2026-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146143017","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dorsal Column Nuclei at the Core of TENS: Circuit Principles and Outlook for Neuropathic Pain Therapy. 背柱核在TENS的核心:电路原理和展望神经性疼痛治疗。
IF 5.8 2区 医学 Q1 NEUROSCIENCES Pub Date : 2026-02-07 DOI: 10.1007/s12264-026-01599-1
Yi-La Ding, Xue-Qing Wu, Tian-Xin Zhao, Shi-Yao Wang, Ceng-Lin Xu, Bei Tan, Yu Du
{"title":"Dorsal Column Nuclei at the Core of TENS: Circuit Principles and Outlook for Neuropathic Pain Therapy.","authors":"Yi-La Ding, Xue-Qing Wu, Tian-Xin Zhao, Shi-Yao Wang, Ceng-Lin Xu, Bei Tan, Yu Du","doi":"10.1007/s12264-026-01599-1","DOIUrl":"https://doi.org/10.1007/s12264-026-01599-1","url":null,"abstract":"","PeriodicalId":19314,"journal":{"name":"Neuroscience bulletin","volume":" ","pages":""},"PeriodicalIF":5.8,"publicationDate":"2026-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146137246","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Current Advances and Applications of Retinal Organoids. 视网膜类器官研究进展及应用。
IF 5.8 2区 医学 Q1 NEUROSCIENCES Pub Date : 2026-02-07 DOI: 10.1007/s12264-025-01584-0
Dan-Ni Zhou, Shu-Guang Yang, Saijilafu, Feng-Quan Zhou

Retinal organoids (ROs) are three-dimensional in vitro models that replicate the specific cellular composition and inner structure of the retina. Currently, ROs derived from human pluripotent stem cells (hPSCs) have been shown to mimic both the structure and function of the human retina. Furthermore, ROs function as a powerful model system for researchers, facilitating the investigation of the pathogenesis and treatment strategies of retinal diseases. Despite their development for over a decade, ROs remain limited in terms of complexity and clinical application. This review summarizes recent advances in the development of retinal differentiation methods and underscores their potential applications in disease modeling, gene therapy, cell transplantation, and drug screening. In addition, it proposes research directions that are geared towards advancing RO methodologies to further broaden their applications.

视网膜类器官(ROs)是三维体外模型,复制视网膜的特定细胞组成和内部结构。目前,来自人类多能干细胞(hPSCs)的活性氧已被证明可以模拟人类视网膜的结构和功能。此外,ROs作为一个强大的模型系统,为研究视网膜疾病的发病机制和治疗策略提供了便利。尽管ROs已经发展了十多年,但在复杂性和临床应用方面仍然有限。本文综述了视网膜分化方法的最新进展,并强调了它们在疾病建模、基因治疗、细胞移植和药物筛选方面的潜在应用。此外,它提出了面向推进RO方法的研究方向,以进一步扩大其应用。
{"title":"Current Advances and Applications of Retinal Organoids.","authors":"Dan-Ni Zhou, Shu-Guang Yang, Saijilafu, Feng-Quan Zhou","doi":"10.1007/s12264-025-01584-0","DOIUrl":"https://doi.org/10.1007/s12264-025-01584-0","url":null,"abstract":"<p><p>Retinal organoids (ROs) are three-dimensional in vitro models that replicate the specific cellular composition and inner structure of the retina. Currently, ROs derived from human pluripotent stem cells (hPSCs) have been shown to mimic both the structure and function of the human retina. Furthermore, ROs function as a powerful model system for researchers, facilitating the investigation of the pathogenesis and treatment strategies of retinal diseases. Despite their development for over a decade, ROs remain limited in terms of complexity and clinical application. This review summarizes recent advances in the development of retinal differentiation methods and underscores their potential applications in disease modeling, gene therapy, cell transplantation, and drug screening. In addition, it proposes research directions that are geared towards advancing RO methodologies to further broaden their applications.</p>","PeriodicalId":19314,"journal":{"name":"Neuroscience bulletin","volume":" ","pages":""},"PeriodicalIF":5.8,"publicationDate":"2026-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146137320","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Putting the Brakes on Thirst: A Neural Circuit for Anticipatory Fluid Control. 给口渴踩刹车:预测液体控制的神经回路。
IF 5.8 2区 医学 Q1 NEUROSCIENCES Pub Date : 2026-02-07 DOI: 10.1007/s12264-025-01580-4
Boli Fu, Qiujie Shi, Qin Wang
{"title":"Putting the Brakes on Thirst: A Neural Circuit for Anticipatory Fluid Control.","authors":"Boli Fu, Qiujie Shi, Qin Wang","doi":"10.1007/s12264-025-01580-4","DOIUrl":"https://doi.org/10.1007/s12264-025-01580-4","url":null,"abstract":"","PeriodicalId":19314,"journal":{"name":"Neuroscience bulletin","volume":" ","pages":""},"PeriodicalIF":5.8,"publicationDate":"2026-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146137298","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
FOXG1 Hierarchically Shapes Synaptic Functions in Striatal iSPNs and Contributes to ASD Etiology. FOXG1影响纹状体ispn突触功能并参与ASD病因学
IF 5.8 2区 医学 Q1 NEUROSCIENCES Pub Date : 2026-02-02 DOI: 10.1007/s12264-025-01573-3
Baoshen Zhang, Daxiang Xu, Shuangshuang Dong, Pei Zhu, Pengfei Jiang, Jie Sun, Junhua Liu, Huanxin Chen, Chunjie Zhao

Autism spectrum disorder (ASD) pathophysiology often involves striatal dysfunction, yet the underlying mechanisms remain unclear. Mutations in Forkhead box G1 (FOXG1) cause FOXG1 syndrome, a condition sharing core ASD features. Here, loss of Foxg1 in the indirect pathway spiny projection neurons (iSPNs) in mice recapitulates ASD symptoms, including social, language, and fine movement deficits. Foxg1 deficiency causes dendritic simplification, spine reduction, and impairs excitatory synaptic transmission. Transcriptome reveals that FOXG1 drives gene networks to multidimensionally control synaptic functions from spine morphogenesis, synaptic maturation, ion transmembrane transport, glutamate receptor clustering, to neurotransmitter release and synaptic transmission. Importantly, FOXG1 directly activates the transcription of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) subunits, and pharmacological potentiation of AMPAR activity normalizes synaptic function and rescues behavioral deficits. Our study provides a new perspective on the relationship between FOXG1 and ASD etiology in iSPNs and suggests the potential of AMPAR activation as a therapeutic intervention for ASD and FOXG1 Syndrome.

自闭症谱系障碍(ASD)的病理生理常涉及纹状体功能障碍,但其潜在机制尚不清楚。叉头盒G1 (FOXG1)突变导致FOXG1综合征,这是一种共享ASD核心特征的疾病。在这里,小鼠间接通路棘投射神经元(ispn)中Foxg1的缺失再现了ASD症状,包括社交、语言和精细运动缺陷。Foxg1缺乏导致树突简化,脊柱减少,并损害兴奋性突触传递。转录组揭示FOXG1驱动基因网络从脊柱形态发生、突触成熟、离子跨膜转运、谷氨酸受体聚集、神经递质释放和突触传递等多方面控制突触功能。重要的是,FOXG1直接激活α-氨基-3-羟基-5-甲基-4-异恶唑丙酸受体(AMPAR)亚基的转录,AMPAR活性的药理学增强可使突触功能正常化并挽救行为缺陷。我们的研究为ispn中FOXG1与ASD病因学之间的关系提供了新的视角,并提示AMPAR激活作为ASD和FOXG1综合征的治疗干预的潜力。
{"title":"FOXG1 Hierarchically Shapes Synaptic Functions in Striatal iSPNs and Contributes to ASD Etiology.","authors":"Baoshen Zhang, Daxiang Xu, Shuangshuang Dong, Pei Zhu, Pengfei Jiang, Jie Sun, Junhua Liu, Huanxin Chen, Chunjie Zhao","doi":"10.1007/s12264-025-01573-3","DOIUrl":"https://doi.org/10.1007/s12264-025-01573-3","url":null,"abstract":"<p><p>Autism spectrum disorder (ASD) pathophysiology often involves striatal dysfunction, yet the underlying mechanisms remain unclear. Mutations in Forkhead box G1 (FOXG1) cause FOXG1 syndrome, a condition sharing core ASD features. Here, loss of Foxg1 in the indirect pathway spiny projection neurons (iSPNs) in mice recapitulates ASD symptoms, including social, language, and fine movement deficits. Foxg1 deficiency causes dendritic simplification, spine reduction, and impairs excitatory synaptic transmission. Transcriptome reveals that FOXG1 drives gene networks to multidimensionally control synaptic functions from spine morphogenesis, synaptic maturation, ion transmembrane transport, glutamate receptor clustering, to neurotransmitter release and synaptic transmission. Importantly, FOXG1 directly activates the transcription of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) subunits, and pharmacological potentiation of AMPAR activity normalizes synaptic function and rescues behavioral deficits. Our study provides a new perspective on the relationship between FOXG1 and ASD etiology in iSPNs and suggests the potential of AMPAR activation as a therapeutic intervention for ASD and FOXG1 Syndrome.</p>","PeriodicalId":19314,"journal":{"name":"Neuroscience bulletin","volume":" ","pages":""},"PeriodicalIF":5.8,"publicationDate":"2026-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146106366","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IL-17 as a New Player in Neuroimmune Cross-Talk: Rewiring Behaviors Through Cytokine-Receptor Cartography. IL-17作为神经免疫串扰的新参与者:通过细胞因子受体制图重新布线行为。
IF 5.8 2区 医学 Q1 NEUROSCIENCES Pub Date : 2026-02-01 Epub Date: 2025-11-23 DOI: 10.1007/s12264-025-01549-3
Jinmei Ye, Lan Yan, Zhibo Tang, Jiashuo Xu, Jie Weng, Tifei Yuan, Daihui Peng
{"title":"IL-17 as a New Player in Neuroimmune Cross-Talk: Rewiring Behaviors Through Cytokine-Receptor Cartography.","authors":"Jinmei Ye, Lan Yan, Zhibo Tang, Jiashuo Xu, Jie Weng, Tifei Yuan, Daihui Peng","doi":"10.1007/s12264-025-01549-3","DOIUrl":"10.1007/s12264-025-01549-3","url":null,"abstract":"","PeriodicalId":19314,"journal":{"name":"Neuroscience bulletin","volume":" ","pages":"476-480"},"PeriodicalIF":5.8,"publicationDate":"2026-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12876498/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145588382","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Model-Dependent Attenuation of Seizures by Cinnabar. 朱砂对癫痫发作的模型依赖性减弱。
IF 5.8 2区 医学 Q1 NEUROSCIENCES Pub Date : 2026-02-01 Epub Date: 2025-08-10 DOI: 10.1007/s12264-025-01480-7
Yuang Gu, Yu Yao, Qiuwen Lou, Xinyan Zhu, Ju Lan, Chenshu Gao, Shuangshuang Wu, Jingjia Liang, Cenglin Xu, Yi Wang, Heming Cheng, Zhong Chen

Epilepsy is one of the most prevalent and severe neurological disorders, and it is inadequately controlled with currently available medications. While cinnabar (mercury(II) sulfide)-a traditional Chinese medicine-has historical application in epilepsy treatment, its therapeutic efficacy and underlying mechanisms are unclear. In this study, we find that cinnabar exerts model-dependent antiseizure efficacy in mice. Specifically, it significantly attenuates acute seizures, enhances the termination of diazepam-resistant status epilepticus, and reduces spontaneous seizures in the kainic acid (KA)-induced seizure model. Conversely, no therapeutic effect was found in the maximal electroshock-, pentylenetetrazole-, or kindling-induced seizure model. Fiber photometry revealed that cinnabar normalizes KA-induced hippocampal neurotransmission imbalances by simultaneously decreasing glutamate hyperactivity and γ-aminobutyric acid hypoactivity. Furthermore, cinnabar has neuroprotective effects and alleviates comorbid anxiety-like behaviors, while showing no alterations in motor function. Our findings suggest cinnabar's potential as a therapeutic agent for seizure management, via a mechanism associated with the reversal of the hippocampal excitatory/inhibitory imbalance.

癫痫是最普遍和最严重的神经系统疾病之一,目前可用的药物无法充分控制癫痫。朱砂(硫化汞)是一种传统中药,在治疗癫痫方面有着悠久的应用历史,但其治疗效果和潜在的机制尚不清楚。在本研究中,我们发现朱砂对小鼠具有模型依赖的抗癫痫作用。具体来说,它可以显著减轻急性发作,增强地西泮抗性癫痫持续状态的终止,并减少kainic酸(KA)诱导的癫痫发作模型中的自发发作。相反,在最大电击,戊四唑或引火引起的癫痫发作模型中没有发现治疗效果。纤维光度法显示,朱砂通过同时降低谷氨酸亢进和γ-氨基丁酸亢进,使ka诱导的海马神经传递失衡正常化。此外,朱砂具有神经保护作用,减轻共病的焦虑样行为,而运动功能没有改变。我们的研究结果表明,朱砂作为癫痫发作治疗药物的潜力,通过一种与海马兴奋性/抑制性失衡逆转相关的机制。
{"title":"Model-Dependent Attenuation of Seizures by Cinnabar.","authors":"Yuang Gu, Yu Yao, Qiuwen Lou, Xinyan Zhu, Ju Lan, Chenshu Gao, Shuangshuang Wu, Jingjia Liang, Cenglin Xu, Yi Wang, Heming Cheng, Zhong Chen","doi":"10.1007/s12264-025-01480-7","DOIUrl":"10.1007/s12264-025-01480-7","url":null,"abstract":"<p><p>Epilepsy is one of the most prevalent and severe neurological disorders, and it is inadequately controlled with currently available medications. While cinnabar (mercury(II) sulfide)-a traditional Chinese medicine-has historical application in epilepsy treatment, its therapeutic efficacy and underlying mechanisms are unclear. In this study, we find that cinnabar exerts model-dependent antiseizure efficacy in mice. Specifically, it significantly attenuates acute seizures, enhances the termination of diazepam-resistant status epilepticus, and reduces spontaneous seizures in the kainic acid (KA)-induced seizure model. Conversely, no therapeutic effect was found in the maximal electroshock-, pentylenetetrazole-, or kindling-induced seizure model. Fiber photometry revealed that cinnabar normalizes KA-induced hippocampal neurotransmission imbalances by simultaneously decreasing glutamate hyperactivity and γ-aminobutyric acid hypoactivity. Furthermore, cinnabar has neuroprotective effects and alleviates comorbid anxiety-like behaviors, while showing no alterations in motor function. Our findings suggest cinnabar's potential as a therapeutic agent for seizure management, via a mechanism associated with the reversal of the hippocampal excitatory/inhibitory imbalance.</p>","PeriodicalId":19314,"journal":{"name":"Neuroscience bulletin","volume":" ","pages":"386-402"},"PeriodicalIF":5.8,"publicationDate":"2026-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12876516/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144812147","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Restoration of Extrasynaptic/Synaptic GABAAR-α5 Localization Improves Sevoflurane-Induced Early Memory Impairment in Aged Mice. 突触外/突触GABAAR-α5定位的恢复改善七氟醚诱导的老年小鼠早期记忆损伤
IF 5.8 2区 医学 Q1 NEUROSCIENCES Pub Date : 2026-02-01 Epub Date: 2025-06-21 DOI: 10.1007/s12264-025-01436-x
Mengxue Zhang, Xiaokun Wang, Zhun Wang, Jinpeng Dong, Sixuan Wang, Ying Dong, Changyu Jiang, Yiqing Yin

GABAA receptors containing α5-subunits (GABAAR-α5) cluster at both extrasynaptic and synaptic locations, interacting with the scaffold proteins radixin and gephyrin, respectively, and the re-localization of GABAAR-α5 influences GABAergic transmission. Here, we found that when early spatial memory deficits occurred in aged mice at 24 h after sevoflurane anesthesia, there was a re-localization of GABAAR-α5 that enhanced tonic inhibition and reduced the decay kinetics of miniature inhibitory postsynaptic currents in the hippocampal CA1 region. Mechanistically, increased phosphorylation of radixin at threonine 564 (Thr564) mediates the re-localization of GABAAR-α5. Acute treatment with the selective extrasynaptic GABAAR-α5 antagonist S44819 restored the GABAAR-α5-mediated inhibitory currents by reversing radixin phosphorylation-dependent GABAAR-α5 re-localization, then improved the sevoflurane-induced spatial memory impairment in aged mice. Our results suggest that the localization of GABAAR-α5 altered by sevoflurane is linked to unbalanced GABAergic transmission, which induces early memory impairment in aged mice. Modulating the GABAAR-α5 localization might be a novel strategy to improve memory after sevoflurane exposure.

含有α5亚基的GABAA受体(GABAAR-α5)聚集在突触外和突触位置,分别与支架蛋白radixin和gephyrin相互作用,GABAAR-α5的重新定位影响GABAA能的传递。本研究发现,在七氟醚麻醉后24 h,老年小鼠出现早期空间记忆缺陷时,GABAAR-α5的重新定位增强了强直性抑制,降低了海马CA1区微小抑制性突触后电流的衰减动力学。从机制上讲,radixin在苏氨酸564 (Thr564)磷酸化的增加介导了GABAAR-α5的再定位。选择性突触外GABAAR-α5拮抗剂S44819通过逆转放射素磷酸化依赖的GABAAR-α5再定位,恢复GABAAR-α5介导的抑制电流,从而改善七氟醚诱导的老年小鼠空间记忆障碍。我们的研究结果表明,七氟醚改变GABAAR-α5的定位与GABAAR能传递不平衡有关,从而导致老年小鼠早期记忆障碍。调节GABAAR-α5定位可能是改善七氟醚暴露后记忆的一种新策略。
{"title":"Restoration of Extrasynaptic/Synaptic GABA<sub>A</sub>R-α5 Localization Improves Sevoflurane-Induced Early Memory Impairment in Aged Mice.","authors":"Mengxue Zhang, Xiaokun Wang, Zhun Wang, Jinpeng Dong, Sixuan Wang, Ying Dong, Changyu Jiang, Yiqing Yin","doi":"10.1007/s12264-025-01436-x","DOIUrl":"10.1007/s12264-025-01436-x","url":null,"abstract":"<p><p>GABA<sub>A</sub> receptors containing α5-subunits (GABA<sub>A</sub>R-α5) cluster at both extrasynaptic and synaptic locations, interacting with the scaffold proteins radixin and gephyrin, respectively, and the re-localization of GABA<sub>A</sub>R-α5 influences GABAergic transmission. Here, we found that when early spatial memory deficits occurred in aged mice at 24 h after sevoflurane anesthesia, there was a re-localization of GABA<sub>A</sub>R-α5 that enhanced tonic inhibition and reduced the decay kinetics of miniature inhibitory postsynaptic currents in the hippocampal CA1 region. Mechanistically, increased phosphorylation of radixin at threonine 564 (Thr564) mediates the re-localization of GABA<sub>A</sub>R-α5. Acute treatment with the selective extrasynaptic GABA<sub>A</sub>R-α5 antagonist S44819 restored the GABA<sub>A</sub>R-α5-mediated inhibitory currents by reversing radixin phosphorylation-dependent GABA<sub>A</sub>R-α5 re-localization, then improved the sevoflurane-induced spatial memory impairment in aged mice. Our results suggest that the localization of GABA<sub>A</sub>R-α5 altered by sevoflurane is linked to unbalanced GABAergic transmission, which induces early memory impairment in aged mice. Modulating the GABA<sub>A</sub>R-α5 localization might be a novel strategy to improve memory after sevoflurane exposure.</p>","PeriodicalId":19314,"journal":{"name":"Neuroscience bulletin","volume":" ","pages":"301-318"},"PeriodicalIF":5.8,"publicationDate":"2026-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12876514/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144340296","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Serpine2-Lrp1 and CD39-A3AR Intercellular Signalling Pathways: Novel Therapeutic Targets for Vascular Dementia. Serpine2-Lrp1和CD39-A3AR细胞间信号通路:血管性痴呆的新治疗靶点
IF 5.8 2区 医学 Q1 NEUROSCIENCES Pub Date : 2026-02-01 Epub Date: 2025-12-05 DOI: 10.1007/s12264-025-01560-8
Xiao-Feng Ran, Peter Illes, Yong Tang
{"title":"Serpine2-Lrp1 and CD39-A<sub>3</sub>AR Intercellular Signalling Pathways: Novel Therapeutic Targets for Vascular Dementia.","authors":"Xiao-Feng Ran, Peter Illes, Yong Tang","doi":"10.1007/s12264-025-01560-8","DOIUrl":"10.1007/s12264-025-01560-8","url":null,"abstract":"","PeriodicalId":19314,"journal":{"name":"Neuroscience bulletin","volume":" ","pages":"481-484"},"PeriodicalIF":5.8,"publicationDate":"2026-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12876512/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145687828","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Neuroscience bulletin
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1