The application of biochar improves the nutrient supply efficiency of organic fertilizer, sustains soil quality and promotes sustainable crop production
Kangkang Zhang, Zaid Khan, Mohammad Nauman Khan, Tao Luo, Lijun Luo, Junguo Bi, Liyong Hu
{"title":"The application of biochar improves the nutrient supply efficiency of organic fertilizer, sustains soil quality and promotes sustainable crop production","authors":"Kangkang Zhang, Zaid Khan, Mohammad Nauman Khan, Tao Luo, Lijun Luo, Junguo Bi, Liyong Hu","doi":"10.1002/fes3.520","DOIUrl":null,"url":null,"abstract":"<p>Rapeseed meal, a nutritious organic fertilizer (OF), contributes to improving soil environment and crop productivity. However, there are also problems, namely slow fertilizer efficiency and low nutrient utilization during the growing season. This 2-year field trial was conducted to explore the effect of biochar addition on improving the nutrient availability of OF through a comparative study of various biochar application rates under rice-rapeseed rotation conditions. The findings revealed that, compared to the individual application of chemical fertilizers (CF), OF alone decreased rice yield (2%/2%) and rapeseed yield (6%/10%) in 2019/2020. Compared with OF, combining biochar (15 t ha<sup>−1</sup>) with OF (OF + B15) significantly increased rice yield (17%/10%) and rapeseed yield (25%/20%) in the first/second year. Additionally, OF + B15 still increased rice yield (14%/7%) and rapeseed yield (12%/13%) for two consecutive years compared to CF. The co-application of biochar and OF had positive impacts on soil physicochemical properties and enzymes. Compared to OF, OF + B15 elevated soil organic carbon (SOC) by 57%–81%, soil catalase 19%, invertase 14%–20%, urease 17%–19%, and phosphatase 13%–17% during rice season, and similarly increased SOC by 77%–90%, soil catalase 14%–16%, invertase 14%–20%, urease 18%–24%, and phosphatase 16%–17% in rapeseed season. Biochar addition improved soil conditions and enzymatic activities, and the available nutrient supply of OF. Also, the co-application of biochar and rapeseed meal surpassed the effect of chemical fertilizer alone on the growth and yield of crops. Therefore, biochar coupling with organic fertilizer is an effective fertilization strategy based on resource recycling, which promotes both crop yield and sustainable agriculture.</p>","PeriodicalId":54283,"journal":{"name":"Food and Energy Security","volume":"13 1","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2024-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/fes3.520","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food and Energy Security","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/fes3.520","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Rapeseed meal, a nutritious organic fertilizer (OF), contributes to improving soil environment and crop productivity. However, there are also problems, namely slow fertilizer efficiency and low nutrient utilization during the growing season. This 2-year field trial was conducted to explore the effect of biochar addition on improving the nutrient availability of OF through a comparative study of various biochar application rates under rice-rapeseed rotation conditions. The findings revealed that, compared to the individual application of chemical fertilizers (CF), OF alone decreased rice yield (2%/2%) and rapeseed yield (6%/10%) in 2019/2020. Compared with OF, combining biochar (15 t ha−1) with OF (OF + B15) significantly increased rice yield (17%/10%) and rapeseed yield (25%/20%) in the first/second year. Additionally, OF + B15 still increased rice yield (14%/7%) and rapeseed yield (12%/13%) for two consecutive years compared to CF. The co-application of biochar and OF had positive impacts on soil physicochemical properties and enzymes. Compared to OF, OF + B15 elevated soil organic carbon (SOC) by 57%–81%, soil catalase 19%, invertase 14%–20%, urease 17%–19%, and phosphatase 13%–17% during rice season, and similarly increased SOC by 77%–90%, soil catalase 14%–16%, invertase 14%–20%, urease 18%–24%, and phosphatase 16%–17% in rapeseed season. Biochar addition improved soil conditions and enzymatic activities, and the available nutrient supply of OF. Also, the co-application of biochar and rapeseed meal surpassed the effect of chemical fertilizer alone on the growth and yield of crops. Therefore, biochar coupling with organic fertilizer is an effective fertilization strategy based on resource recycling, which promotes both crop yield and sustainable agriculture.
期刊介绍:
Food and Energy Security seeks to publish high quality and high impact original research on agricultural crop and forest productivity to improve food and energy security. It actively seeks submissions from emerging countries with expanding agricultural research communities. Papers from China, other parts of Asia, India and South America are particularly welcome. The Editorial Board, headed by Editor-in-Chief Professor Martin Parry, is determined to make FES the leading publication in its sector and will be aiming for a top-ranking impact factor.
Primary research articles should report hypothesis driven investigations that provide new insights into mechanisms and processes that determine productivity and properties for exploitation. Review articles are welcome but they must be critical in approach and provide particularly novel and far reaching insights.
Food and Energy Security offers authors a forum for the discussion of the most important advances in this field and promotes an integrative approach of scientific disciplines. Papers must contribute substantially to the advancement of knowledge.
Examples of areas covered in Food and Energy Security include:
• Agronomy
• Biotechnological Approaches
• Breeding & Genetics
• Climate Change
• Quality and Composition
• Food Crops and Bioenergy Feedstocks
• Developmental, Physiology and Biochemistry
• Functional Genomics
• Molecular Biology
• Pest and Disease Management
• Post Harvest Biology
• Soil Science
• Systems Biology