Fast-charge, long-duration storage in lithium batteries

IF 38.6 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Joule Pub Date : 2024-03-20 DOI:10.1016/j.joule.2023.12.022
Shuo Jin , Xiaosi Gao , Shifeng Hong , Yue Deng , Pengyu Chen , Rong Yang , Yong Lak Joo , Lynden A. Archer
{"title":"Fast-charge, long-duration storage in lithium batteries","authors":"Shuo Jin ,&nbsp;Xiaosi Gao ,&nbsp;Shifeng Hong ,&nbsp;Yue Deng ,&nbsp;Pengyu Chen ,&nbsp;Rong Yang ,&nbsp;Yong Lak Joo ,&nbsp;Lynden A. Archer","doi":"10.1016/j.joule.2023.12.022","DOIUrl":null,"url":null,"abstract":"<div><p>Electrode materials that enable lithium (Li) batteries to be charged on timescales of minutes but maintain high energy conversion efficiencies and long-duration storage are of scientific and technological interest. They are fundamentally challenged by the sluggish interfacial ion transport at the anode, slow solid-state ion diffusion, and too fast electroreduction reaction kinetics. Here, we report that Li alloy anodes based on indium (In) exhibit fast Li surface and bulk diffusivities but moderate electroreduction reaction rates. The resultant LiIn anodes appear to belong to a unique class of inherently low second Damköhler (<em>Da</em>) number (<em>LDA_II</em>) materials, which are predicted to exhibit high Li reversibility at unconventionally high charge rates. We demonsterate this capability using Li-ion battery cells in which LiIn anodes are paired with a range of intercalation (e.g., LiFePO<sub>4</sub> and LiNi<sub>0.8</sub>Co<sub>0.1</sub>Mn<sub>0.1</sub>O<sub>2</sub>), and conversion (e.g., I<sub>2</sub> and O<sub>2</sub>) cathode. We show that such cells manifest excellent fast charging capabilities in a range of electrolyte solvents.</p></div>","PeriodicalId":343,"journal":{"name":"Joule","volume":null,"pages":null},"PeriodicalIF":38.6000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2542435123005408/pdfft?md5=39827393944d94ae9d751bdeec591ad3&pid=1-s2.0-S2542435123005408-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Joule","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542435123005408","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Electrode materials that enable lithium (Li) batteries to be charged on timescales of minutes but maintain high energy conversion efficiencies and long-duration storage are of scientific and technological interest. They are fundamentally challenged by the sluggish interfacial ion transport at the anode, slow solid-state ion diffusion, and too fast electroreduction reaction kinetics. Here, we report that Li alloy anodes based on indium (In) exhibit fast Li surface and bulk diffusivities but moderate electroreduction reaction rates. The resultant LiIn anodes appear to belong to a unique class of inherently low second Damköhler (Da) number (LDA_II) materials, which are predicted to exhibit high Li reversibility at unconventionally high charge rates. We demonsterate this capability using Li-ion battery cells in which LiIn anodes are paired with a range of intercalation (e.g., LiFePO4 and LiNi0.8Co0.1Mn0.1O2), and conversion (e.g., I2 and O2) cathode. We show that such cells manifest excellent fast charging capabilities in a range of electrolyte solvents.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
锂电池的快速充电和长时间储存
能使锂(Li)电池在几分钟内完成充电,同时又能保持高能量转换效率和长时间储存的电极材料,在科学和技术上都具有重要意义。它们面临的根本挑战是阳极界面离子传输迟缓、固态离子扩散缓慢以及电还原反应动力学过快。在此,我们报告了基于铟(In)的锂合金阳极表现出较快的锂表面和体扩散速度,但电还原反应速度适中。由此产生的铟锂阳极似乎属于一种独特的固有低第二达姆克勒(Da)数(LDA_II)材料,据预测,这种材料能在非传统的高电荷率下表现出较高的锂可逆性。我们使用锂离子电池来证明这种能力,在这种电池中,铟锂阳极与一系列插层(如 LiFePO4 和 LiNi0.8Co0.1Mn0.1O2)和转换(如 I2 和 O2)阴极配对。我们的研究表明,这种电池在各种电解质溶剂中都具有出色的快速充电能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Joule
Joule Energy-General Energy
CiteScore
53.10
自引率
2.00%
发文量
198
期刊介绍: Joule is a sister journal to Cell that focuses on research, analysis, and ideas related to sustainable energy. It aims to address the global challenge of the need for more sustainable energy solutions. Joule is a forward-looking journal that bridges disciplines and scales of energy research. It connects researchers and analysts working on scientific, technical, economic, policy, and social challenges related to sustainable energy. The journal covers a wide range of energy research, from fundamental laboratory studies on energy conversion and storage to global-level analysis. Joule aims to highlight and amplify the implications, challenges, and opportunities of novel energy research for different groups in the field.
期刊最新文献
Technoeconomic analysis of perovskite/silicon tandem solar modules De-doping engineering for efficient and heat-stable perovskite solar cells Promising excitonic absorption for efficient perovskite solar cells Integrated CO2 capture and conversion to form syngas Ex situ bismuth doping for efficient CdSeTe thin-film solar cells with open-circuit voltages exceeding 900 mV
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1