首页 > 最新文献

Joule最新文献

英文 中文
Electrolyte engineering for hydrogen energy 氢能电解液工程
IF 39.8 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2026-02-03 DOI: 10.1016/j.joule.2025.102306
Wenyu An, Yu Zhong, Liang Luo, Daojin Zhou, Xiaoming Sun
Green hydrogen production and utilization represent a promising carbon-neutral energy strategy, basically being categorized into alkaline, anion-exchange membrane, and proton exchange membrane electrolysis according to the types of electrolytes. Apart from the optimization of intrinsic activity of catalysts, electrolyte engineering has become an emerging and effective approach. Aiming to get deeper insights into the electrode-electrolyte interface, this perspective highlights two primary mechanisms: restructuring of hydrogen-bond networks that govern reactant transport and modulation of intermediate adsorption through hydration layers or electrostatic interactions. Electrolyte effects are systematically discussed across key reactions involved in hydrogen energy production and utilization, including the two half-reactions of water electrolysis, hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), as well as the two half-reactions in fuel cells (FCs), hydrogen oxidation reaction (HOR) and oxygen reduction reaction (ORR). We conclude by outlining strategic opportunities to leverage ion-mediated effects through electrolyte engineering, offering guidance toward more efficient, selective, and durable electrocatalytic systems for future energy conversion.
绿色制氢和利用是一种很有前途的碳中性能源策略,根据电解质的类型基本分为碱性电解、阴离子交换膜电解和质子交换膜电解。除了优化催化剂的内在活性外,电解液工程已成为一种新兴而有效的方法。为了更深入地了解电极-电解质界面,该观点强调了两种主要机制:通过水合层或静电相互作用调节控制反应物运输的氢键网络的重组和中间吸附的调节。本文系统地讨论了氢能源生产和利用过程中涉及的两个关键反应——电解析氢反应(HER)和析氧反应(OER),以及燃料电池中的两个半反应——氢氧化反应(HOR)和氧还原反应(ORR)。最后,我们概述了通过电解质工程利用离子介导效应的战略机遇,为未来能量转换提供更高效、选择性和耐用的电催化系统的指导。
{"title":"Electrolyte engineering for hydrogen energy","authors":"Wenyu An, Yu Zhong, Liang Luo, Daojin Zhou, Xiaoming Sun","doi":"10.1016/j.joule.2025.102306","DOIUrl":"https://doi.org/10.1016/j.joule.2025.102306","url":null,"abstract":"Green hydrogen production and utilization represent a promising carbon-neutral energy strategy, basically being categorized into alkaline, anion-exchange membrane, and proton exchange membrane electrolysis according to the types of electrolytes. Apart from the optimization of intrinsic activity of catalysts, electrolyte engineering has become an emerging and effective approach. Aiming to get deeper insights into the electrode-electrolyte interface, this perspective highlights two primary mechanisms: restructuring of hydrogen-bond networks that govern reactant transport and modulation of intermediate adsorption through hydration layers or electrostatic interactions. Electrolyte effects are systematically discussed across key reactions involved in hydrogen energy production and utilization, including the two half-reactions of water electrolysis, hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), as well as the two half-reactions in fuel cells (FCs), hydrogen oxidation reaction (HOR) and oxygen reduction reaction (ORR). We conclude by outlining strategic opportunities to leverage ion-mediated effects through electrolyte engineering, offering guidance toward more efficient, selective, and durable electrocatalytic systems for future energy conversion.","PeriodicalId":343,"journal":{"name":"Joule","volume":"275 1","pages":""},"PeriodicalIF":39.8,"publicationDate":"2026-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146101522","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microstructure-tailored Ni-rich cathode with fast Li+ diffusion layer boosts high-rate and long-cycling all-solid-state batteries 具有快速Li+扩散层的微结构定制富镍阴极促进了高倍率和长循环全固态电池的发展
IF 39.8 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2026-02-02 DOI: 10.1016/j.joule.2025.102273
Bosheng Zhao, Dongsheng Ren, Deqing Li, Hongkun Pan, Yi Guo, Qianfan Pei, Xinyu Rui, Dechang Wang, Jinli Liu, Feixiong He, Peng Huang, Tiening Tan, Gaolong Zhu, Jianfeng Hua, Xiang Liu, Languang Lu, Minggao Ouyang
{"title":"Microstructure-tailored Ni-rich cathode with fast Li+ diffusion layer boosts high-rate and long-cycling all-solid-state batteries","authors":"Bosheng Zhao, Dongsheng Ren, Deqing Li, Hongkun Pan, Yi Guo, Qianfan Pei, Xinyu Rui, Dechang Wang, Jinli Liu, Feixiong He, Peng Huang, Tiening Tan, Gaolong Zhu, Jianfeng Hua, Xiang Liu, Languang Lu, Minggao Ouyang","doi":"10.1016/j.joule.2025.102273","DOIUrl":"https://doi.org/10.1016/j.joule.2025.102273","url":null,"abstract":"","PeriodicalId":343,"journal":{"name":"Joule","volume":"84 1","pages":""},"PeriodicalIF":39.8,"publicationDate":"2026-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146110648","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Solvation-configurational entropy governs interfacial kinetics in low-temperature batteries 溶剂构型熵控制低温电池的界面动力学
IF 39.8 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2026-01-29 DOI: 10.1016/j.joule.2025.102271
Wendi Luo, Hongwei Fu, Peng Peng, Caitian Gao, Mingyuan Gu, Apparao M. Rao, Zhongqin Dai, Songqi Gu, Jiang Zhou, Fanfei Sun, Yongmin He, Bingan Lu
{"title":"Solvation-configurational entropy governs interfacial kinetics in low-temperature batteries","authors":"Wendi Luo, Hongwei Fu, Peng Peng, Caitian Gao, Mingyuan Gu, Apparao M. Rao, Zhongqin Dai, Songqi Gu, Jiang Zhou, Fanfei Sun, Yongmin He, Bingan Lu","doi":"10.1016/j.joule.2025.102271","DOIUrl":"https://doi.org/10.1016/j.joule.2025.102271","url":null,"abstract":"","PeriodicalId":343,"journal":{"name":"Joule","volume":"93 1","pages":""},"PeriodicalIF":39.8,"publicationDate":"2026-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146072997","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Full-cycle oxygen-tolerant organic flow batteries 全循环耐氧有机液流电池
IF 39.8 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2026-01-29 DOI: 10.1016/j.joule.2025.102267
Yufeng Liu, Kai Wan, Zhipeng Xiang, Zhiyong Fu, Yuan Li, Mingbao Huang, Yi-Chun Lu, Shang-Da Jiang, Zhenxing Liang
{"title":"Full-cycle oxygen-tolerant organic flow batteries","authors":"Yufeng Liu, Kai Wan, Zhipeng Xiang, Zhiyong Fu, Yuan Li, Mingbao Huang, Yi-Chun Lu, Shang-Da Jiang, Zhenxing Liang","doi":"10.1016/j.joule.2025.102267","DOIUrl":"https://doi.org/10.1016/j.joule.2025.102267","url":null,"abstract":"","PeriodicalId":343,"journal":{"name":"Joule","volume":"76 1","pages":""},"PeriodicalIF":39.8,"publicationDate":"2026-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146071897","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High-voltage sulfur electrochemistry enabled by copper-ion mediation in non-aqueous batteries 在非水电池中通过铜离子介质实现高压硫电化学
IF 39.8 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2026-01-28 DOI: 10.1016/j.joule.2025.102268
Yu Ding, Chunlong Dai, Fei Wang, Zhaohui Li, Haichuan Zhou, Zongbin Luo, Maowen Xu, Linyu Hu, Zifeng Lin
Conventional lithium-sulfur (Li-S) batteries, which rely on alkali metal ions (Li⁺/Na⁺/K⁺) as charge carriers, suffer from polysulfide dissolution, poor Li2S conductivity, and low redox potential (−0.5 V vs. the standard hydrogen electrode [SHE]). Here, we report a copper-ion-mediated sulfur battery chemistry that fundamentally circumvents these limitations by leveraging the intrinsically low solubility of CuxS in non-aqueous electrolytes. By replacing alkali metal ions with copper ions as the charge carrier in a 1,3-dioxolane/1,2-dimethoxyethane (DOL/DME)-based electrolyte, we achieve an insoluble CuxS discharge intermediate, which elevates the sulfur redox potential to 0.5 V vs. SHE, more than a 1.2 V increase over conventional Li-S systems, enabling a discharge voltage of 3.3 V in a hybrid Li-S full cell. Simultaneously, the formation of conductive CuS species ensures efficient reaction kinetics while eliminating polysulfide shuttling. The copper-ion-mediated sulfur electrochemistry unlocks high energy density and fast kinetics, paving the way for practical sulfur-based batteries.
传统的锂硫(Li- s)电池依赖碱金属离子(Li + /Na + /K +)作为电荷载体,存在多硫化物溶解、Li2S电导率差、氧化还原电位低(与标准氢电极[SHE]相比为- 0.5 V)的问题。在这里,我们报告了一种铜介导的硫电池化学,通过利用CuxS在非水电解质中的固有低溶解度,从根本上绕过了这些限制。通过用铜离子取代碱金属离子作为DOL/DME基电解质中的电荷载体,我们获得了一种不溶性CuxS放电中间体,将硫的氧化还原电位提高到0.5 V,比传统的Li-S系统提高了1.2 V以上,使混合Li-S充满电池的放电电压达到3.3 V。同时,导电CuₓS物质的形成保证了高效的反应动力学,同时消除了多硫化物的穿梭。铜介导的硫电化学释放出高能量密度和快速动力学,为实用的硫基电池铺平了道路。
{"title":"High-voltage sulfur electrochemistry enabled by copper-ion mediation in non-aqueous batteries","authors":"Yu Ding, Chunlong Dai, Fei Wang, Zhaohui Li, Haichuan Zhou, Zongbin Luo, Maowen Xu, Linyu Hu, Zifeng Lin","doi":"10.1016/j.joule.2025.102268","DOIUrl":"https://doi.org/10.1016/j.joule.2025.102268","url":null,"abstract":"Conventional lithium-sulfur (Li-S) batteries, which rely on alkali metal ions (Li⁺/Na⁺/K⁺) as charge carriers, suffer from polysulfide dissolution, poor Li<sub>2</sub>S conductivity, and low redox potential (−0.5 V vs. the standard hydrogen electrode [SHE]). Here, we report a copper-ion-mediated sulfur battery chemistry that fundamentally circumvents these limitations by leveraging the intrinsically low solubility of Cu<sub><em>x</em></sub>S in non-aqueous electrolytes. By replacing alkali metal ions with copper ions as the charge carrier in a 1,3-dioxolane/1,2-dimethoxyethane (DOL/DME)-based electrolyte, we achieve an insoluble Cu<sub><em>x</em></sub>S discharge intermediate, which elevates the sulfur redox potential to 0.5 V vs. SHE, more than a 1.2 V increase over conventional Li-S systems, enabling a discharge voltage of 3.3 V in a hybrid Li-S full cell. Simultaneously, the formation of conductive Cu<em>ₓ</em>S species ensures efficient reaction kinetics while eliminating polysulfide shuttling. The copper-ion-mediated sulfur electrochemistry unlocks high energy density and fast kinetics, paving the way for practical sulfur-based batteries.","PeriodicalId":343,"journal":{"name":"Joule","volume":"263 1","pages":""},"PeriodicalIF":39.8,"publicationDate":"2026-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146070615","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advances in non/low-crystalline solid-state electrolytes enabled by halide-based electrolytes 由卤化物基电解质实现的非/低晶固态电解质的进展
IF 39.8 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2026-01-27 DOI: 10.1016/j.joule.2025.102260
Jie Qu, Han Wu, Xingyu Wang, Simeng Zhang, Junyi Yue, Chong Liu, Jianwen Liang, Xueliang Sun, Xiaona Li
{"title":"Advances in non/low-crystalline solid-state electrolytes enabled by halide-based electrolytes","authors":"Jie Qu, Han Wu, Xingyu Wang, Simeng Zhang, Junyi Yue, Chong Liu, Jianwen Liang, Xueliang Sun, Xiaona Li","doi":"10.1016/j.joule.2025.102260","DOIUrl":"https://doi.org/10.1016/j.joule.2025.102260","url":null,"abstract":"","PeriodicalId":343,"journal":{"name":"Joule","volume":"180 1","pages":""},"PeriodicalIF":39.8,"publicationDate":"2026-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146071907","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Work of adhesion guided nucleation control for energy-dense potassium metal batteries 高能量金属钾电池黏附引导成核控制的研究
IF 39.8 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2026-01-27 DOI: 10.1016/j.joule.2025.102266
Yupei Han, Adam Lovett, Nuebi Xavier, Matthew Blunt, Pan He, Ajay Piriya Vijaya Kumar Saroja, Wanjun Ren, Yi Lu, Yudong Luo, Thomas S. Miller, Qiong Cai, Yang Xu
{"title":"Work of adhesion guided nucleation control for energy-dense potassium metal batteries","authors":"Yupei Han, Adam Lovett, Nuebi Xavier, Matthew Blunt, Pan He, Ajay Piriya Vijaya Kumar Saroja, Wanjun Ren, Yi Lu, Yudong Luo, Thomas S. Miller, Qiong Cai, Yang Xu","doi":"10.1016/j.joule.2025.102266","DOIUrl":"https://doi.org/10.1016/j.joule.2025.102266","url":null,"abstract":"","PeriodicalId":343,"journal":{"name":"Joule","volume":"43 1","pages":""},"PeriodicalIF":39.8,"publicationDate":"2026-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146072533","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Alcohol-dispersed conductive polymer for high-performance organic photovoltaic cells 高性能有机光伏电池用醇分散导电聚合物
IF 39.8 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2026-01-26 DOI: 10.1016/j.joule.2025.102263
Guanlin Wang, Yong Cui, Miaoning Ou, Yue Yu, Yang Xiao, Haoyu Yuan, Tao Zhang, Zhihao Chen, Ni Yang, Lijiao Ma, Runnan Yu, Shaoqing Zhang, Jianhui Hou
{"title":"Alcohol-dispersed conductive polymer for high-performance organic photovoltaic cells","authors":"Guanlin Wang, Yong Cui, Miaoning Ou, Yue Yu, Yang Xiao, Haoyu Yuan, Tao Zhang, Zhihao Chen, Ni Yang, Lijiao Ma, Runnan Yu, Shaoqing Zhang, Jianhui Hou","doi":"10.1016/j.joule.2025.102263","DOIUrl":"https://doi.org/10.1016/j.joule.2025.102263","url":null,"abstract":"","PeriodicalId":343,"journal":{"name":"Joule","volume":"274 1","pages":""},"PeriodicalIF":39.8,"publicationDate":"2026-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146048639","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stabilizing α-FAPbI3 perovskite via centered formamidinium cation immobilization 中心甲脒阳离子固定化稳定α-FAPbI3钙钛矿
IF 39.8 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2026-01-26 DOI: 10.1016/j.joule.2025.102262
Jung Hwan Lee, Yu Jin Lee, Hyungju Ahn, Jeong Eun Park, Ryan Rhee, Yonghyun Albert Kwon, Taehee Kim, Jeong Ho Cho, Ji-Sang Park, Dongho Kim, Jong Hyeok Park
{"title":"Stabilizing α-FAPbI3 perovskite via centered formamidinium cation immobilization","authors":"Jung Hwan Lee, Yu Jin Lee, Hyungju Ahn, Jeong Eun Park, Ryan Rhee, Yonghyun Albert Kwon, Taehee Kim, Jeong Ho Cho, Ji-Sang Park, Dongho Kim, Jong Hyeok Park","doi":"10.1016/j.joule.2025.102262","DOIUrl":"https://doi.org/10.1016/j.joule.2025.102262","url":null,"abstract":"","PeriodicalId":343,"journal":{"name":"Joule","volume":"85 1","pages":""},"PeriodicalIF":39.8,"publicationDate":"2026-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146048637","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Competitive anion coordination overcomes charge-transfer barriers for lithium–sulfur batteries 竞争阴离子配位克服了锂硫电池的电荷转移障碍
IF 39.8 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2026-01-23 DOI: 10.1016/j.joule.2025.102259
Xi-Yao Li, Bo-Quan Li, Tian Jin, Shuai Feng, Yu-Chen Gao, Meng Zhao, Xiang Chen, Jia-Qi Huang, Qiang Zhang
Beyond ionic conduction and solid-electrolyte interphase formation, the fundamental roles of lithium salt anions in batteries remain unexplored. Herein, an anion-induced competitive solvation mechanism that governs lithium polysulfide (LiPS) behaviors in high-energy-density lithium–sulfur batteries is pioneeringly unveiled. Specifically, anions contend against weakly solvating solvents to occupy the LiPS inner solvation shell. Enhancing anion coordination while diminishing weakly solvating solvent coordination overcomes the rate-determining LiPS charge-transfer barriers. As a proof of concept, bis(fluorosulfonyl)imide anion coordination reduces activation polarization and boosts cycling stability at high current densities. Ah-level pouch cells achieve stable operation at high rates of 0.35 C and deliver a record-setting energy density of 622 Wh kg−1 (based on total weight) with stable cycling. By elucidating the anion-induced competitive solvation mechanism, our work transcends conventional views of anion roles and establishes a new paradigm for advancing practical Li–S batteries.
除了离子传导和固体电解质间相形成之外,锂盐阴离子在电池中的基本作用仍未被探索。本文开创性地揭示了阴离子诱导的控制高能量密度锂硫电池中多硫锂(lip)行为的竞争溶剂化机制。具体来说,阴离子与弱溶剂溶剂竞争,以占据LiPS的内溶剂化壳层。增强阴离子配位,减弱弱溶剂溶剂配位,克服了决定速率的LiPS电荷转移障碍。作为概念证明,双(氟磺酰基)亚胺阴离子配位降低了激活极化,提高了高电流密度下的循环稳定性。ah级袋状电池在0.35℃的高速率下实现稳定运行,并提供创纪录的622 Wh kg−1(基于总重量)的能量密度,稳定循环。通过阐明阴离子诱导的竞争溶剂化机制,我们的工作超越了阴离子作用的传统观点,并为推进实用Li-S电池建立了新的范例。
{"title":"Competitive anion coordination overcomes charge-transfer barriers for lithium–sulfur batteries","authors":"Xi-Yao Li, Bo-Quan Li, Tian Jin, Shuai Feng, Yu-Chen Gao, Meng Zhao, Xiang Chen, Jia-Qi Huang, Qiang Zhang","doi":"10.1016/j.joule.2025.102259","DOIUrl":"https://doi.org/10.1016/j.joule.2025.102259","url":null,"abstract":"Beyond ionic conduction and solid-electrolyte interphase formation, the fundamental roles of lithium salt anions in batteries remain unexplored. Herein, an anion-induced competitive solvation mechanism that governs lithium polysulfide (LiPS) behaviors in high-energy-density lithium–sulfur batteries is pioneeringly unveiled. Specifically, anions contend against weakly solvating solvents to occupy the LiPS inner solvation shell. Enhancing anion coordination while diminishing weakly solvating solvent coordination overcomes the rate-determining LiPS charge-transfer barriers. As a proof of concept, bis(fluorosulfonyl)imide anion coordination reduces activation polarization and boosts cycling stability at high current densities. Ah-level pouch cells achieve stable operation at high rates of 0.35 C and deliver a record-setting energy density of 622 Wh kg<sup>−1</sup> (based on total weight) with stable cycling. By elucidating the anion-induced competitive solvation mechanism, our work transcends conventional views of anion roles and establishes a new paradigm for advancing practical Li–S batteries.","PeriodicalId":343,"journal":{"name":"Joule","volume":"30 1","pages":""},"PeriodicalIF":39.8,"publicationDate":"2026-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146021979","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Joule
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1