Dynamic simulation of GEH-IES with distributed parameter characteristics for hydrogen-blending transportation

IF 3.1 4区 工程技术 Q3 ENERGY & FUELS Frontiers in Energy Pub Date : 2023-12-31 DOI:10.1007/s11708-023-0914-4
Dengji Zhou, Jiarui Hao, Wang Xiao, Chen Wang, Chongyuan Shui, Xingyun Jia, Siyun Yan
{"title":"Dynamic simulation of GEH-IES with distributed parameter characteristics for hydrogen-blending transportation","authors":"Dengji Zhou,&nbsp;Jiarui Hao,&nbsp;Wang Xiao,&nbsp;Chen Wang,&nbsp;Chongyuan Shui,&nbsp;Xingyun Jia,&nbsp;Siyun Yan","doi":"10.1007/s11708-023-0914-4","DOIUrl":null,"url":null,"abstract":"<div><p>For the purpose of environment protecting and energy saving, renewable energy has been distributed into the power grid in a considerable scale. However, the consuming capacity of the power grid for renewable energy is relatively limited. As an effective way to absorb the excessive renewable energy, the power to gas (P2G) technology is able to convert excessive renewable energy into hydrogen. Hydrogen-blending natural gas pipeline is an efficient approach for hydrogen transportation. However, hydrogen-blending natural gas complicates the whole integrated energy system (IES), making it more problematic to cope with the equipment failure, demand response and dynamic optimization. Nevertheless, dynamic simulation of distribution parameters of gas–electricity–hydrogen (GEH) energy system, especially for hydrogen concentration, still remains a challenge. The dynamics of hydrogen-blending IES is undiscovered. To tackle the issue, an iterative solving framework of the GEH-IES and a cell segment-based method for hydrogen mixing ratio distribution are proposed in this paper. Two typical numerical cases studying the conditions under which renewables fluctuate and generators fail are conducted on a real-word system. The results show that hydrogen blending timely and spatially influences the flow parameters, of which the hydrogen mixing ratio and gas pressure loss along the gas pipeline are negatively correlated and the response to hydrogen mixing ratio is time-delayed. Moreover, the hydrogen-blending amount and position also have a significant impact on the performance of the compressor.</p></div>","PeriodicalId":570,"journal":{"name":"Frontiers in Energy","volume":"18 4","pages":"506 - 524"},"PeriodicalIF":3.1000,"publicationDate":"2023-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Energy","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11708-023-0914-4","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

For the purpose of environment protecting and energy saving, renewable energy has been distributed into the power grid in a considerable scale. However, the consuming capacity of the power grid for renewable energy is relatively limited. As an effective way to absorb the excessive renewable energy, the power to gas (P2G) technology is able to convert excessive renewable energy into hydrogen. Hydrogen-blending natural gas pipeline is an efficient approach for hydrogen transportation. However, hydrogen-blending natural gas complicates the whole integrated energy system (IES), making it more problematic to cope with the equipment failure, demand response and dynamic optimization. Nevertheless, dynamic simulation of distribution parameters of gas–electricity–hydrogen (GEH) energy system, especially for hydrogen concentration, still remains a challenge. The dynamics of hydrogen-blending IES is undiscovered. To tackle the issue, an iterative solving framework of the GEH-IES and a cell segment-based method for hydrogen mixing ratio distribution are proposed in this paper. Two typical numerical cases studying the conditions under which renewables fluctuate and generators fail are conducted on a real-word system. The results show that hydrogen blending timely and spatially influences the flow parameters, of which the hydrogen mixing ratio and gas pressure loss along the gas pipeline are negatively correlated and the response to hydrogen mixing ratio is time-delayed. Moreover, the hydrogen-blending amount and position also have a significant impact on the performance of the compressor.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于氢气混合运输的具有分布式参数特征的 GEH-IES 的动态模拟
出于保护环境和节约能源的目的,可再生能源已大规模进入电网。然而,电网对可再生能源的消纳能力相对有限。作为吸收过剩可再生能源的有效途径,电转气(P2G)技术能够将过剩的可再生能源转化为氢气。氢气混合天然气管道是氢气运输的有效方法。然而,氢气混合天然气会使整个综合能源系统(IES)变得复杂,从而在应对设备故障、需求响应和动态优化方面带来更多问题。然而,气-电-氢(GEH)能源系统分布参数的动态模拟,尤其是氢气浓度的动态模拟,仍然是一个挑战。氢气混合 IES 的动态变化尚未被发现。为解决这一问题,本文提出了气电氢能源系统的迭代求解框架和基于电池段的氢气混合比分布方法。在一个实词系统中进行了两个典型的数值案例,研究了可再生能源波动和发电机故障的条件。结果表明,氢气掺混对流量参数产生了及时的空间影响,其中氢气掺混比与气体管道压力损失呈负相关,且对氢气掺混比的响应是延时的。此外,氢气混合量和位置对压缩机的性能也有显著影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Frontiers in Energy
Frontiers in Energy Energy-Energy Engineering and Power Technology
CiteScore
5.90
自引率
6.90%
发文量
708
期刊介绍: Frontiers in Energy, an interdisciplinary and peer-reviewed international journal launched in January 2007, seeks to provide a rapid and unique platform for reporting the most advanced research on energy technology and strategic thinking in order to promote timely communication between researchers, scientists, engineers, and policy makers in the field of energy. Frontiers in Energy aims to be a leading peer-reviewed platform and an authoritative source of information for analyses, reviews and evaluations in energy engineering and research, with a strong focus on energy analysis, energy modelling and prediction, integrated energy systems, energy conversion and conservation, energy planning and energy on economic and policy issues. Frontiers in Energy publishes state-of-the-art review articles, original research papers and short communications by individual researchers or research groups. It is strictly peer-reviewed and accepts only original submissions in English. The scope of the journal is broad and covers all latest focus in current energy research. High-quality papers are solicited in, but are not limited to the following areas: -Fundamental energy science -Energy technology, including energy generation, conversion, storage, renewables, transport, urban design and building efficiency -Energy and the environment, including pollution control, energy efficiency and climate change -Energy economics, strategy and policy -Emerging energy issue
期刊最新文献
Performance analysis of a novel medium temperature compressed air energy storage system based on inverter-driven compressor pressure regulation Impact of bimetallic synergies on Mo-doping NiFeOOH: Insights into enhanced OER activity and reconstructed electronic structure Performance-enhanced direct ammonia protonic ceramic fuel cells using CeO2-supported Ni and Ru catalyst layer Low-carbon collaborative dual-layer optimization for energy station considering joint electricity and heat demand response Oxygen reduction reaction performance of Fe-N-C catalyst with dual nitrogen source
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1