A queueing system with an SIR-type infection

IF 0.7 3区 工程技术 Q4 ENGINEERING, INDUSTRIAL Probability in the Engineering and Informational Sciences Pub Date : 2024-01-16 DOI:10.1017/s0269964823000256
Claude Lefèvre, Matthieu Simon
{"title":"A queueing system with an SIR-type infection","authors":"Claude Lefèvre, Matthieu Simon","doi":"10.1017/s0269964823000256","DOIUrl":null,"url":null,"abstract":"<p>We consider the propagation of a stochastic SIR-type epidemic in two connected populations: a relatively small local population of interest which is surrounded by a much larger external population. External infectives can temporarily enter the small population and contribute to the spread of the infection inside this population. The rules for entry of infectives into the small population as well as their length of stay are modeled by a general Markov queueing system. Our main objective is to determine the distribution of the total number of infections within both populations. To do this, the approach we propose consists of deriving a family of martingales for the joint epidemic processes and applying classical stopping time or convergence theorems. The study then focuses on several particular cases where the external infection is described by a linear branching process and the entry of external infectives obeys certain specific rules. Some of the results obtained are illustrated by numerical examples.</p>","PeriodicalId":54582,"journal":{"name":"Probability in the Engineering and Informational Sciences","volume":"11 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Probability in the Engineering and Informational Sciences","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1017/s0269964823000256","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the propagation of a stochastic SIR-type epidemic in two connected populations: a relatively small local population of interest which is surrounded by a much larger external population. External infectives can temporarily enter the small population and contribute to the spread of the infection inside this population. The rules for entry of infectives into the small population as well as their length of stay are modeled by a general Markov queueing system. Our main objective is to determine the distribution of the total number of infections within both populations. To do this, the approach we propose consists of deriving a family of martingales for the joint epidemic processes and applying classical stopping time or convergence theorems. The study then focuses on several particular cases where the external infection is described by a linear branching process and the entry of external infectives obeys certain specific rules. Some of the results obtained are illustrated by numerical examples.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有 SIR 型感染的排队系统
我们考虑的是随机 SIR 型流行病在两个相连种群中的传播问题:一个相对较小的本地相关种群被一个大得多的外部种群所包围。外部感染者可以暂时进入小种群,并促进感染在该种群内部的传播。感染者进入小群体的规则及其停留时间由一般马尔可夫排队系统建模。我们的主要目标是确定两个人群中感染者总数的分布情况。为此,我们提出的方法包括为联合流行过程推导出一系列马氏过程,并应用经典的停止时间或收敛定理。然后,研究将重点放在外部感染由线性分支过程描述且外部感染者的进入遵守某些特定规则的几种特殊情况上。一些结果通过数值示例进行了说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.20
自引率
18.20%
发文量
45
审稿时长
>12 weeks
期刊介绍: The primary focus of the journal is on stochastic modelling in the physical and engineering sciences, with particular emphasis on queueing theory, reliability theory, inventory theory, simulation, mathematical finance and probabilistic networks and graphs. Papers on analytic properties and related disciplines are also considered, as well as more general papers on applied and computational probability, if appropriate. Readers include academics working in statistics, operations research, computer science, engineering, management science and physical sciences as well as industrial practitioners engaged in telecommunications, computer science, financial engineering, operations research and management science.
期刊最新文献
On the probability of a Pareto record Orderings of extremes among dependent extended Weibull random variables Discounted cost exponential semi-Markov decision processes with unbounded transition rates: a service rate control problem with impatient customers Discounted densities of overshoot and undershoot for Lévy processes with applications in finance Some properties of convex and increasing convex orders under Archimedean copula
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1