Biosynthesis, acquisition, regulation, and upcycling of heme: recent advances.

IF 8.1 2区 工程技术 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Critical Reviews in Biotechnology Pub Date : 2024-11-01 Epub Date: 2024-01-16 DOI:10.1080/07388551.2023.2291339
Fei Yu, Ziwei Wang, Zihan Zhang, Jingwen Zhou, Jianghua Li, Jian Chen, Guocheng Du, Xinrui Zhao
{"title":"Biosynthesis, acquisition, regulation, and upcycling of heme: recent advances.","authors":"Fei Yu, Ziwei Wang, Zihan Zhang, Jingwen Zhou, Jianghua Li, Jian Chen, Guocheng Du, Xinrui Zhao","doi":"10.1080/07388551.2023.2291339","DOIUrl":null,"url":null,"abstract":"<p><p>Heme, an iron-containing tetrapyrrole in hemoproteins, including: hemoglobin, myoglobin, catalase, cytochrome c, and cytochrome P450, plays critical physiological roles in different organisms. Heme-derived chemicals, such as biliverdin, bilirubin, and phycocyanobilin, are known for their antioxidant and anti-inflammatory properties and have shown great potential in fighting viruses and diseases. Therefore, more and more attention has been paid to the biosynthesis of hemoproteins and heme derivatives, which depends on the adequate heme supply in various microbial cell factories. The enhancement of endogenous biosynthesis and exogenous uptake can improve the intracellular heme supply, but the excess free heme is toxic to the cells. Therefore, based on the heme-responsive regulators, several sensitive biosensors were developed to fine-tune the intracellular levels of heme. In this review, recent advances in the: biosynthesis, acquisition, regulation, and upcycling of heme were summarized to provide a solid foundation for the efficient production and application of high-value-added hemoproteins and heme derivatives.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":" ","pages":"1422-1438"},"PeriodicalIF":8.1000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical Reviews in Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/07388551.2023.2291339","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/16 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Heme, an iron-containing tetrapyrrole in hemoproteins, including: hemoglobin, myoglobin, catalase, cytochrome c, and cytochrome P450, plays critical physiological roles in different organisms. Heme-derived chemicals, such as biliverdin, bilirubin, and phycocyanobilin, are known for their antioxidant and anti-inflammatory properties and have shown great potential in fighting viruses and diseases. Therefore, more and more attention has been paid to the biosynthesis of hemoproteins and heme derivatives, which depends on the adequate heme supply in various microbial cell factories. The enhancement of endogenous biosynthesis and exogenous uptake can improve the intracellular heme supply, but the excess free heme is toxic to the cells. Therefore, based on the heme-responsive regulators, several sensitive biosensors were developed to fine-tune the intracellular levels of heme. In this review, recent advances in the: biosynthesis, acquisition, regulation, and upcycling of heme were summarized to provide a solid foundation for the efficient production and application of high-value-added hemoproteins and heme derivatives.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
血红素的生物合成、获取、调节和再循环:最新进展。
血红素是血红蛋白(包括血红蛋白、肌红蛋白、过氧化氢酶、细胞色素 c 和细胞色素 P450)中的一种含铁四吡咯,在不同生物体内发挥着重要的生理作用。血红素衍生的化学物质,如胆绿素、胆红素和藻蓝蛋白,以其抗氧化和抗炎特性而闻名,并在抗病毒和抗病方面显示出巨大的潜力。因此,人们越来越关注血蛋白和血红素衍生物的生物合成,而这取决于各种微生物细胞工厂中充足的血红素供应。加强内源性生物合成和外源性吸收可以改善细胞内的血红素供应,但过量的游离血红素对细胞具有毒性。因此,基于血红素反应调节器,人们开发了几种灵敏的生物传感器来微调细胞内的血红素水平。本综述总结了血红素的生物合成、获取、调节和再循环方面的最新进展,为高附加值血蛋白和血红素衍生物的高效生产和应用奠定了坚实的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Critical Reviews in Biotechnology
Critical Reviews in Biotechnology 工程技术-生物工程与应用微生物
CiteScore
20.80
自引率
1.10%
发文量
71
审稿时长
4.8 months
期刊介绍: Biotechnological techniques, from fermentation to genetic manipulation, have become increasingly relevant to the food and beverage, fuel production, chemical and pharmaceutical, and waste management industries. Consequently, academic as well as industrial institutions need to keep abreast of the concepts, data, and methodologies evolved by continuing research. This journal provides a forum of critical evaluation of recent and current publications and, periodically, for state-of-the-art reports from various geographic areas around the world. Contributing authors are recognized experts in their fields, and each article is reviewed by an objective expert to ensure accuracy and objectivity of the presentation.
期刊最新文献
How do probiotics alleviate constipation? A narrative review of mechanisms. Antimicrobials from endophytes as novel therapeutics to counter drug-resistant pathogens. A comprehensive review on the recent advances for 5-aminolevulinic acid production by the engineered bacteria. Escherichia coli and Pichia pastoris: microbial cell-factory platform for -full-length IgG production. 3D printing: trends and approaches toward achieving long-term sustainability in the food industry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1