A Ratio Fluorescence Method Based on Dual Emissive Copper Nanoclusters for the Detection of Vanillin.

IF 2.6 4区 化学 Q2 BIOCHEMICAL RESEARCH METHODS Journal of Fluorescence Pub Date : 2025-02-01 Epub Date: 2024-01-17 DOI:10.1007/s10895-024-03582-3
Jingxue Yuan, Yao Feng, Qingqing Hu, Jianhua Kuang, Zhengjun Cheng
{"title":"A Ratio Fluorescence Method Based on Dual Emissive Copper Nanoclusters for the Detection of Vanillin.","authors":"Jingxue Yuan, Yao Feng, Qingqing Hu, Jianhua Kuang, Zhengjun Cheng","doi":"10.1007/s10895-024-03582-3","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, a novel double-emission fluorescence probe at 340 and 400 nm was synthesized by one-pot method using phenylalanine (Phe) and ascorbic acid (AA) as stabilizing and reducing agents. It was found that the fluorescence intensity of the probe at 400 nm could be controlled by controlling the temperature within a certain range, and the ratio of double-emission fluorescence probe could be further regulated. Under the optimal conditions, the fluorescence intensity at 340 nm decreased significantly, while it only showed a slight decrease at 400 nm, which constituted the ratio fluorescence probe. The synthesized fluorescence probe showed good linearity in the range of 0.2-32 μM, and its detection limit was 63.4 nM. Moreover, the method was successfully employed to determine VA in vanilla drink and perfumes, and corresponding results were consistent with those of HPLC.</p>","PeriodicalId":15800,"journal":{"name":"Journal of Fluorescence","volume":" ","pages":"987-995"},"PeriodicalIF":2.6000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluorescence","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s10895-024-03582-3","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/17 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, a novel double-emission fluorescence probe at 340 and 400 nm was synthesized by one-pot method using phenylalanine (Phe) and ascorbic acid (AA) as stabilizing and reducing agents. It was found that the fluorescence intensity of the probe at 400 nm could be controlled by controlling the temperature within a certain range, and the ratio of double-emission fluorescence probe could be further regulated. Under the optimal conditions, the fluorescence intensity at 340 nm decreased significantly, while it only showed a slight decrease at 400 nm, which constituted the ratio fluorescence probe. The synthesized fluorescence probe showed good linearity in the range of 0.2-32 μM, and its detection limit was 63.4 nM. Moreover, the method was successfully employed to determine VA in vanilla drink and perfumes, and corresponding results were consistent with those of HPLC.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种基于双发射铜纳米簇的比率荧光方法,用于检测香兰素。
本研究以苯丙氨酸(Phe)和抗坏血酸(AA)为稳定剂和还原剂,采用一锅法合成了一种新型 340 纳米和 400 纳米双发射荧光探针。研究发现,通过将温度控制在一定范围内,可以控制探针在 400 纳米波长的荧光强度,并进一步调节双发射荧光探针的比例。在最佳条件下,340 nm 处的荧光强度明显下降,而 400 nm 处的荧光强度仅有轻微下降,这就构成了比值荧光探针。合成的荧光探针在 0.2-32 μM 范围内线性关系良好,检测限为 63.4 nM。此外,该方法还被成功地应用于香草饮料和香水中VA的检测,其结果与高效液相色谱法一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Fluorescence
Journal of Fluorescence 化学-分析化学
CiteScore
4.60
自引率
7.40%
发文量
203
审稿时长
5.4 months
期刊介绍: Journal of Fluorescence is an international forum for the publication of peer-reviewed original articles that advance the practice of this established spectroscopic technique. Topics covered include advances in theory/and or data analysis, studies of the photophysics of aromatic molecules, solvent, and environmental effects, development of stationary or time-resolved measurements, advances in fluorescence microscopy, imaging, photobleaching/recovery measurements, and/or phosphorescence for studies of cell biology, chemical biology and the advanced uses of fluorescence in flow cytometry/analysis, immunology, high throughput screening/drug discovery, DNA sequencing/arrays, genomics and proteomics. Typical applications might include studies of macromolecular dynamics and conformation, intracellular chemistry, and gene expression. The journal also publishes papers that describe the synthesis and characterization of new fluorophores, particularly those displaying unique sensitivities and/or optical properties. In addition to original articles, the Journal also publishes reviews, rapid communications, short communications, letters to the editor, topical news articles, and technical and design notes.
期刊最新文献
Development of RhB@CdMOF-based Fluorescent Sensor Array for Discrimination of BTEX. Engineering High-Performance Carbazole-Based Co-Sensitizers: Synthesis, Photophysical Characterization, and Synergistic Enhancement in Dye-Sensitized Solar Cells. Synthesis of Dual-Responsive, Highly Fluorescent, Non-Conjugated Polymer Dots for Fe3+ Detection. Synthesis of Novel Phenanthroimidazole Based Beta-Diketone Compounds: Investigation of Their Spectroscopic Properties and Electrochemical Characterization. Photocatalytic Degradation of Brilliant Blue Dye Under Solar Light Irradiation: An Insight Into Mechanistic, Kinetics, Mineralization and Scavenging Studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1