Eman G A M El-Dawy, Youssuf A Gherbawy, Mohamed A Hussein
{"title":"Characterization of Aspergillus section Flavi associated with stored grains.","authors":"Eman G A M El-Dawy, Youssuf A Gherbawy, Mohamed A Hussein","doi":"10.1007/s12550-023-00514-1","DOIUrl":null,"url":null,"abstract":"<p><p>Increased frequencies of Aspergillus section Flavi and aflatoxins in cereal grains have been seen in recent years due to changes in climate circumstances, such as high temperatures and drought. To assess the microbiological risks of contamination, it is critical to have a reliable and accurate means of identifying the fungi. The main goal of this study was to characterize Aspergillus species from section Flavi obtained from twenty-three samples of barley and maize grains, gathered from different markets in Qena, Egypt, using morphological and molecular techniques. Twenty-three isolates were chosen, one isolate from each sample; they were identified as A. aflatoxiformans (4 isolates), A. flavus (18), and A. parasiticus (1). The existence of four aflatoxin biosynthesis genes was also investigated in relation to the strains' ability to produce total aflatoxins and aflatoxin B1, focusing on the regulatory gene aflR and the structural genes aflD and aflM. All strains producing aflatoxins were linked to the presence of aflR1 and/or aflR2, except two isolates that exhibited aflatoxins but from which aflR1 or aflR2 were not detected, which may be due to one or more missing or unstudied additional genes involved in aflatoxin production. AflD and aflM genes were amplified by 10 and 9 isolates, respectively. Five samples of barley and maize were contaminated by aflatoxins. Fifteen isolates were positive for producing total aflatoxins in the range of 0.1-240 ppm. Antagonistic activity of Trichoderma viride against A. flavus (F5) was assessed at 31.3%. Trichoderma reduced total aflatoxins in all treated seeds, particularly those subjected to Trichoderma formulation.</p>","PeriodicalId":19060,"journal":{"name":"Mycotoxin Research","volume":" ","pages":"187-202"},"PeriodicalIF":2.6000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10834605/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mycotoxin Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12550-023-00514-1","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/17 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MYCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Increased frequencies of Aspergillus section Flavi and aflatoxins in cereal grains have been seen in recent years due to changes in climate circumstances, such as high temperatures and drought. To assess the microbiological risks of contamination, it is critical to have a reliable and accurate means of identifying the fungi. The main goal of this study was to characterize Aspergillus species from section Flavi obtained from twenty-three samples of barley and maize grains, gathered from different markets in Qena, Egypt, using morphological and molecular techniques. Twenty-three isolates were chosen, one isolate from each sample; they were identified as A. aflatoxiformans (4 isolates), A. flavus (18), and A. parasiticus (1). The existence of four aflatoxin biosynthesis genes was also investigated in relation to the strains' ability to produce total aflatoxins and aflatoxin B1, focusing on the regulatory gene aflR and the structural genes aflD and aflM. All strains producing aflatoxins were linked to the presence of aflR1 and/or aflR2, except two isolates that exhibited aflatoxins but from which aflR1 or aflR2 were not detected, which may be due to one or more missing or unstudied additional genes involved in aflatoxin production. AflD and aflM genes were amplified by 10 and 9 isolates, respectively. Five samples of barley and maize were contaminated by aflatoxins. Fifteen isolates were positive for producing total aflatoxins in the range of 0.1-240 ppm. Antagonistic activity of Trichoderma viride against A. flavus (F5) was assessed at 31.3%. Trichoderma reduced total aflatoxins in all treated seeds, particularly those subjected to Trichoderma formulation.
期刊介绍:
Mycotoxin Research, the official publication of the Society for Mycotoxin Research, is a peer-reviewed, scientific journal dealing with all aspects related to toxic fungal metabolites. The journal publishes original research articles and reviews in all areas dealing with mycotoxins. As an interdisciplinary platform, Mycotoxin Research welcomes submission of scientific contributions in the following research fields:
- Ecology and genetics of mycotoxin formation
- Mode of action of mycotoxins, metabolism and toxicology
- Agricultural production and mycotoxins
- Human and animal health aspects, including exposure studies and risk assessment
- Food and feed safety, including occurrence, prevention, regulatory aspects, and control of mycotoxins
- Environmental safety and technology-related aspects of mycotoxins
- Chemistry, synthesis and analysis.