Pub Date : 2025-01-14DOI: 10.1007/s12550-025-00581-6
Mark A Weaver, Lilly C Park, Michael J Brewer, Michael J Grodowitz, Hamed K Abbas
Aflatoxin contamination of corn can occur when developing kernels are infected by the plant pathogen Aspergillus flavus. One route of infection is from airborne conidia. We executed a series of experiments within the corn canopy during two growing seasons and in two states to document the abundance and dynamics of the airborne A. flavus population. We did not observe any significant diurnal changes in the conidial density (p = 0.171) or any effect of sampler height (p = 0.882) within the canopy. Significant changes (p < 0.001) were noted during the season, with a trend towards increased airborne populations with later stages of corn development and more than a 20-fold increase from July to August. The median aflatoxigenicity of airborne isolates from a corn canopy in Texas was about 50 times higher than the corresponding population in Mississippi. It was also noteworthy that highly aflatoxigenic, weakly sporulating S-morphotypes accounted for 14-30% of the airborne isolates in Mississippi at a site with historically rare abundance of S-morphotypes. The genetic diversity was high among the 140 analyzed airborne isolates, with 76 unique haplotypes identified and 55 haplotypes occurring only in 1 isolate. Even in the context of this highly diverse population, a haplotype matching that of a commercial biocontrol strain was found in 13 of the 70 isolates from Mississippi and 1 of the 70 isolates from Texas. The airborne A. flavus population is genetically diverse (Shannon's index = 1.4 to 1.6), similar to grain samples in other surveys, and much less aflatoxigenic in Mississippi than in Texas.
{"title":"Detection, quantification, and characterization of airborne Aspergillus flavus within the corn canopy.","authors":"Mark A Weaver, Lilly C Park, Michael J Brewer, Michael J Grodowitz, Hamed K Abbas","doi":"10.1007/s12550-025-00581-6","DOIUrl":"https://doi.org/10.1007/s12550-025-00581-6","url":null,"abstract":"<p><p>Aflatoxin contamination of corn can occur when developing kernels are infected by the plant pathogen Aspergillus flavus. One route of infection is from airborne conidia. We executed a series of experiments within the corn canopy during two growing seasons and in two states to document the abundance and dynamics of the airborne A. flavus population. We did not observe any significant diurnal changes in the conidial density (p = 0.171) or any effect of sampler height (p = 0.882) within the canopy. Significant changes (p < 0.001) were noted during the season, with a trend towards increased airborne populations with later stages of corn development and more than a 20-fold increase from July to August. The median aflatoxigenicity of airborne isolates from a corn canopy in Texas was about 50 times higher than the corresponding population in Mississippi. It was also noteworthy that highly aflatoxigenic, weakly sporulating S-morphotypes accounted for 14-30% of the airborne isolates in Mississippi at a site with historically rare abundance of S-morphotypes. The genetic diversity was high among the 140 analyzed airborne isolates, with 76 unique haplotypes identified and 55 haplotypes occurring only in 1 isolate. Even in the context of this highly diverse population, a haplotype matching that of a commercial biocontrol strain was found in 13 of the 70 isolates from Mississippi and 1 of the 70 isolates from Texas. The airborne A. flavus population is genetically diverse (Shannon's index = 1.4 to 1.6), similar to grain samples in other surveys, and much less aflatoxigenic in Mississippi than in Texas.</p>","PeriodicalId":19060,"journal":{"name":"Mycotoxin Research","volume":" ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142979310","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-14DOI: 10.1007/s12550-024-00580-z
Maria A Angula, Anthony Ishola, Muvari Tjiurutue, Michael Sulyok, Rudolf Krska, Chibundu N Ezekiel, Jane Misihairabgwi
Mycotoxin exposure from contaminated food is a significant global health issue, particularly among vulnerable children. Given limited data on mycotoxin exposure among Namibian children, this study investigated mycotoxin types and levels in foods, evaluated dietary mycotoxin exposure from processed cereal foods in children under age five from rural households in Oshana region, Namibia. Mycotoxins in cereal-based food samples (n = 162) (mahangu flour (n = 35), sorghum flour (n = 13), mahangu thin/thick porridge (n = 54), oshikundu (n = 56), and omungome (n = 4)) were determined by liquid chromatography-tandem mass spectrometry. Aflatoxin B1 (AFB1, 35.8%), zearalenone (27.2%), fumonisin B1 (FB1, 24.1%), citrinin (CIT, 12.4%) and deoxynivalenol (10.5%) were the major mycotoxins quantified. Food samples (35.8% (n = 58) and 6.2% (n = 10)) exceeded the 0.1 µg/kg AFB1 and 200 µg/kg FB1 EU limit for children's food, respectively. Several emerging mycotoxins including the neurotoxic 3-nitropropionic acid, moniliformin (MON), and tenuazonic acid were quantified in over 50% of all samples. Co-occurrence of AFB1, CIT, and FB1 detected in 4.9% (n = 8) samples, which could heighten food safety concerns. Regarding exposure assessment and risk characterization, average probable dietary intake for AFB1 from all ready-to-eat-foods was 0.036 µg/kg bw/day, which resulted in margin of exposures (MOE) of 11 and 0.65 risk cancer cases/year/100,000 people, indicating a risk of chronic aflatoxicosis. High tolerable daily intake values for FB1, and MOE for beauvericin and MON exceeded reference values. Consumption of a diversified diet and interventions including timely planting and harvesting, best grain storage, and other standard postharvest food handling practices are needed to mitigate mycotoxin exposure through contaminated cereal foods and to safeguard the health of the rural children in Namibia.
{"title":"Mycotoxin exposure through the consumption of processed cereal food for children (< 5 years old) from rural households of Oshana, a region of Namibia.","authors":"Maria A Angula, Anthony Ishola, Muvari Tjiurutue, Michael Sulyok, Rudolf Krska, Chibundu N Ezekiel, Jane Misihairabgwi","doi":"10.1007/s12550-024-00580-z","DOIUrl":"https://doi.org/10.1007/s12550-024-00580-z","url":null,"abstract":"<p><p>Mycotoxin exposure from contaminated food is a significant global health issue, particularly among vulnerable children. Given limited data on mycotoxin exposure among Namibian children, this study investigated mycotoxin types and levels in foods, evaluated dietary mycotoxin exposure from processed cereal foods in children under age five from rural households in Oshana region, Namibia. Mycotoxins in cereal-based food samples (n = 162) (mahangu flour (n = 35), sorghum flour (n = 13), mahangu thin/thick porridge (n = 54), oshikundu (n = 56), and omungome (n = 4)) were determined by liquid chromatography-tandem mass spectrometry. Aflatoxin B<sub>1</sub> (AFB<sub>1</sub>, 35.8%), zearalenone (27.2%), fumonisin B<sub>1</sub> (FB<sub>1</sub>, 24.1%), citrinin (CIT, 12.4%) and deoxynivalenol (10.5%) were the major mycotoxins quantified. Food samples (35.8% (n = 58) and 6.2% (n = 10)) exceeded the 0.1 µg/kg AFB<sub>1</sub> and 200 µg/kg FB<sub>1</sub> EU limit for children's food, respectively. Several emerging mycotoxins including the neurotoxic 3-nitropropionic acid, moniliformin (MON), and tenuazonic acid were quantified in over 50% of all samples. Co-occurrence of AFB<sub>1</sub>, CIT, and FB<sub>1</sub> detected in 4.9% (n = 8) samples, which could heighten food safety concerns. Regarding exposure assessment and risk characterization, average probable dietary intake for AFB<sub>1</sub> from all ready-to-eat-foods was 0.036 µg/kg bw/day, which resulted in margin of exposures (MOE) of 11 and 0.65 risk cancer cases/year/100,000 people, indicating a risk of chronic aflatoxicosis. High tolerable daily intake values for FB<sub>1</sub>, and MOE for beauvericin and MON exceeded reference values. Consumption of a diversified diet and interventions including timely planting and harvesting, best grain storage, and other standard postharvest food handling practices are needed to mitigate mycotoxin exposure through contaminated cereal foods and to safeguard the health of the rural children in Namibia.</p>","PeriodicalId":19060,"journal":{"name":"Mycotoxin Research","volume":" ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142979333","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-30DOI: 10.1007/s12550-024-00579-6
Marek Pernica, Jan Martiník, Rastislav Boško, Simona Černá, Zdeněk Svoboda, Karolína Benešová, Sylvie Běláková
Mycotoxins are secondary metabolites of fungi and represent a serious problem for human health. Due to growing interest, various aspects have been widely studied by scientific groups. One of these aspects relates to the food industry and associated beer production. Mycotoxins can be present in the basic raw materials for beer production as well as in brewed beer. Problematic mycotoxins that pose a serious risk of toxicity are aflatoxins especially aflatoxin B1 (AFB1), fumonisins (FBs), and zearalenone (ZEN) and its metabolites, deoxynivalenol (DON) including its acetylated forms and also the modified form deoxynivalenol-3-glucoside (DON-3G), T-2 toxin, HT-2 toxin, and ochratoxin A. The Research Institute of Brewing and Malting has been dealing with the issue of mycotoxins since 2008. This study describes the analysis of the above mycotoxins during 2020-2024 in barley (n = 775), malt (n = 751), and commercially available beers (n = 522) using QuEChERS, immunoaffinity columns, and UPLC-MS/MS. The results showed positive samples of mycotoxins in brewing and malting matrices at the level of micrograms per kilogram (barley, malt) and nanograms per liter for beer. Therefore, it is a residual concentration and the accurate quantitative determination of mycotoxins, correct interpretation of the results in connection with toxicological values, and the maximum permissible levels of mycotoxins play a key role in global food safety and consumer protection.
{"title":"Mycotoxins in brewing and malting: is every sample contaminated with mycotoxins?","authors":"Marek Pernica, Jan Martiník, Rastislav Boško, Simona Černá, Zdeněk Svoboda, Karolína Benešová, Sylvie Běláková","doi":"10.1007/s12550-024-00579-6","DOIUrl":"https://doi.org/10.1007/s12550-024-00579-6","url":null,"abstract":"<p><p>Mycotoxins are secondary metabolites of fungi and represent a serious problem for human health. Due to growing interest, various aspects have been widely studied by scientific groups. One of these aspects relates to the food industry and associated beer production. Mycotoxins can be present in the basic raw materials for beer production as well as in brewed beer. Problematic mycotoxins that pose a serious risk of toxicity are aflatoxins especially aflatoxin B<sub>1</sub> (AFB<sub>1</sub>), fumonisins (FBs), and zearalenone (ZEN) and its metabolites, deoxynivalenol (DON) including its acetylated forms and also the modified form deoxynivalenol-3-glucoside (DON-3G), T-2 toxin, HT-2 toxin, and ochratoxin A. The Research Institute of Brewing and Malting has been dealing with the issue of mycotoxins since 2008. This study describes the analysis of the above mycotoxins during 2020-2024 in barley (n = 775), malt (n = 751), and commercially available beers (n = 522) using QuEChERS, immunoaffinity columns, and UPLC-MS/MS. The results showed positive samples of mycotoxins in brewing and malting matrices at the level of micrograms per kilogram (barley, malt) and nanograms per liter for beer. Therefore, it is a residual concentration and the accurate quantitative determination of mycotoxins, correct interpretation of the results in connection with toxicological values, and the maximum permissible levels of mycotoxins play a key role in global food safety and consumer protection.</p>","PeriodicalId":19060,"journal":{"name":"Mycotoxin Research","volume":" ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142910072","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-20DOI: 10.1007/s12550-024-00573-y
Eva Maria Biehl, Sarah Schneidemann-Bostelmann, Felix Hoheneder, Stefan Asam, Ralph Hückelhoven, Michael Rychlik
Molds of the genus Fusarium infect nearly all types of grain, causing significant yield and quality losses. Many species of this genus produce mycotoxins, which pose significant risks to human and animal health. In beer production, the complex interaction between primary fungal metabolites and secondarily modified mycotoxins in barley, malt, and beer complicates the situation, highlighting the need for effective analytical methods to quickly and accurately monitor these toxins. We developed and validated a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method to simultaneously analyze 14 Fusarium toxins, including modified forms (deoxynivalenol (DON), DON-3-glucoside, 3-acetyl-DON, 15-acetyl-DON, nivalenol, fusarenone X, HT-2 toxin, T-2 toxin, the enniatins A, A1, B, B1, beauvericin, and zearalenone) in barley and throughout the malting process. Stable isotope dilution assays (SIDAs) and matrix-matched calibration were used for quantification. A micro-malting setup was established to produce Fusarium-contaminated barley malt under reproducible conditions using targeted inoculation with F. culmorum. Mycotoxins were quantified throughout the malting process and compared to the content of fungal DNA. Further, the impact of various malting parameters was investigated, thus revealing that different malting scenarios exhibited different toxin enrichment patterns. We demonstrated that mycotoxin concentration and the ratio of DON to DON-3-glucoside changed throughout the malting processes, depending on fungal spore concentrations, germination temperature, and malting temperature. The study highlights the complexity of mycotoxin dynamics in malt production and the importance of optimized processing conditions to minimize toxin levels in final malt products.
{"title":"Monitoring Fusarium toxins from barley to malt: Targeted inoculation with Fusarium culmorum.","authors":"Eva Maria Biehl, Sarah Schneidemann-Bostelmann, Felix Hoheneder, Stefan Asam, Ralph Hückelhoven, Michael Rychlik","doi":"10.1007/s12550-024-00573-y","DOIUrl":"https://doi.org/10.1007/s12550-024-00573-y","url":null,"abstract":"<p><p>Molds of the genus Fusarium infect nearly all types of grain, causing significant yield and quality losses. Many species of this genus produce mycotoxins, which pose significant risks to human and animal health. In beer production, the complex interaction between primary fungal metabolites and secondarily modified mycotoxins in barley, malt, and beer complicates the situation, highlighting the need for effective analytical methods to quickly and accurately monitor these toxins. We developed and validated a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method to simultaneously analyze 14 Fusarium toxins, including modified forms (deoxynivalenol (DON), DON-3-glucoside, 3-acetyl-DON, 15-acetyl-DON, nivalenol, fusarenone X, HT-2 toxin, T-2 toxin, the enniatins A, A1, B, B1, beauvericin, and zearalenone) in barley and throughout the malting process. Stable isotope dilution assays (SIDAs) and matrix-matched calibration were used for quantification. A micro-malting setup was established to produce Fusarium-contaminated barley malt under reproducible conditions using targeted inoculation with F. culmorum. Mycotoxins were quantified throughout the malting process and compared to the content of fungal DNA. Further, the impact of various malting parameters was investigated, thus revealing that different malting scenarios exhibited different toxin enrichment patterns. We demonstrated that mycotoxin concentration and the ratio of DON to DON-3-glucoside changed throughout the malting processes, depending on fungal spore concentrations, germination temperature, and malting temperature. The study highlights the complexity of mycotoxin dynamics in malt production and the importance of optimized processing conditions to minimize toxin levels in final malt products.</p>","PeriodicalId":19060,"journal":{"name":"Mycotoxin Research","volume":" ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142864893","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-12DOI: 10.1007/s12550-024-00576-9
Kizito Nishimwe, Erin Bowers, Dirk E Maier
Aflatoxins (AF), fungal metabolites, can contaminate feed in favorable environments, posing health risks to humans and animals. Dairy cows exposed to aflatoxin B1 (AFB1) excrete its metabolite, aflatoxin M1 (AFM1), in milk, compromising its safety. The current study examined the use of an AF binder in dairy feed concentrates on farms in Rwanda to mitigate AFM1 in milk. It was conducted in Nyagatare district, peri-urban areas of Kigali (Center), and Huye district (South) with 42 farmers randomly selected from a previous study evenly divided into control and intervention groups. The intervention group received an AF binder (Novasil™ Plus) and training on both the usage of the binder and AF prevention in dairy feed. Sociodemographic and dairy management data were collected through semi-structured questionnaires. Farmers in both the treatment and control groups were visited at regular intervals over a 3-month time period (five total visits per farmer) to collect samples of milk and feed for the quantification of AFM1 and AFB1, respectively, and to interview participants. The use of the AF binder evidenced a significant reduction in milk AFM1 contamination between the intervention (mean, 0.15 µg/l; median, 0.13 µg/l) and control groups (mean, 0.30 µg/l; median, 0.24 µg/l) (p < 0.05). AFB1 was detected in the feed concentrate at a mean concentration of 32.2 µg/kg (median, 36.2 µg/kg); however, mean AFM1 levels in both groups (i.e., control and intervention) did not exceed the Rwanda Standards Board (RSB) regulatory limit of 0.5 µg/kg AFM1. AF binders show potential as a low-cost strategy to reduce AFM1 contamination in the Rwandan context. However, there is a need for clear standards on the registration and use of binders before they are deployed in-country and to claim their mitigating effects on AFM1 in milk.
{"title":"On-farm evaluation of aflatoxin binder inclusion in dairy feed as a strategy to reduce milk aflatoxin M1 contamination in the Rwandan context.","authors":"Kizito Nishimwe, Erin Bowers, Dirk E Maier","doi":"10.1007/s12550-024-00576-9","DOIUrl":"https://doi.org/10.1007/s12550-024-00576-9","url":null,"abstract":"<p><p>Aflatoxins (AF), fungal metabolites, can contaminate feed in favorable environments, posing health risks to humans and animals. Dairy cows exposed to aflatoxin B1 (AFB1) excrete its metabolite, aflatoxin M1 (AFM1), in milk, compromising its safety. The current study examined the use of an AF binder in dairy feed concentrates on farms in Rwanda to mitigate AFM1 in milk. It was conducted in Nyagatare district, peri-urban areas of Kigali (Center), and Huye district (South) with 42 farmers randomly selected from a previous study evenly divided into control and intervention groups. The intervention group received an AF binder (Novasil™ Plus) and training on both the usage of the binder and AF prevention in dairy feed. Sociodemographic and dairy management data were collected through semi-structured questionnaires. Farmers in both the treatment and control groups were visited at regular intervals over a 3-month time period (five total visits per farmer) to collect samples of milk and feed for the quantification of AFM1 and AFB1, respectively, and to interview participants. The use of the AF binder evidenced a significant reduction in milk AFM1 contamination between the intervention (mean, 0.15 µg/l; median, 0.13 µg/l) and control groups (mean, 0.30 µg/l; median, 0.24 µg/l) (p < 0.05). AFB1 was detected in the feed concentrate at a mean concentration of 32.2 µg/kg (median, 36.2 µg/kg); however, mean AFM1 levels in both groups (i.e., control and intervention) did not exceed the Rwanda Standards Board (RSB) regulatory limit of 0.5 µg/kg AFM1. AF binders show potential as a low-cost strategy to reduce AFM1 contamination in the Rwandan context. However, there is a need for clear standards on the registration and use of binders before they are deployed in-country and to claim their mitigating effects on AFM1 in milk.</p>","PeriodicalId":19060,"journal":{"name":"Mycotoxin Research","volume":" ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142813712","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-10DOI: 10.1007/s12550-024-00577-8
Rastislav Boško, Helena Pluháčková, Jan Martiník, Karolína Benešová, Zdeněk Svoboda, Sylvie Běláková, Marek Pernica
The silymarin complex extracted from milk thistle provides significant health benefits, particularly due to its antioxidant and hepatoprotective properties. However, plant substances can be contaminated by a number of fungi types and their secondary metabolites-mycotoxins. This work deals with the determination of aflatoxins and zearalenone and its metabolites in 39 different samples grown in 2020 and 2021. Analysis of mycotoxins was performed by UHPLC-MS/MS after immunoaffinity column AFLAPREP® and EASI-EXTRACT® ZEARALENONE clean-up. The presence of aflatoxins was not confirmed in the monitored samples, but 1/3 of the samples were contaminated with zearalenone in the range of 2.8-378.9 µg/kg. Metabolites of zearalenone such as α-zearalenol, α-zearalanol, and β-zearalanol were not detected in any of the samples. β-Zearalenol was found in two samples (2.6 µg/kg and 29.8 µg/kg).
{"title":"Occurrence of mycotoxins in milk thistle: to be included in legislation or not?","authors":"Rastislav Boško, Helena Pluháčková, Jan Martiník, Karolína Benešová, Zdeněk Svoboda, Sylvie Běláková, Marek Pernica","doi":"10.1007/s12550-024-00577-8","DOIUrl":"https://doi.org/10.1007/s12550-024-00577-8","url":null,"abstract":"<p><p>The silymarin complex extracted from milk thistle provides significant health benefits, particularly due to its antioxidant and hepatoprotective properties. However, plant substances can be contaminated by a number of fungi types and their secondary metabolites-mycotoxins. This work deals with the determination of aflatoxins and zearalenone and its metabolites in 39 different samples grown in 2020 and 2021. Analysis of mycotoxins was performed by UHPLC-MS/MS after immunoaffinity column AFLAPREP<sup>®</sup> and EASI-EXTRACT<sup>®</sup> ZEARALENONE clean-up. The presence of aflatoxins was not confirmed in the monitored samples, but 1/3 of the samples were contaminated with zearalenone in the range of 2.8-378.9 µg/kg. Metabolites of zearalenone such as α-zearalenol, α-zearalanol, and β-zearalanol were not detected in any of the samples. β-Zearalenol was found in two samples (2.6 µg/kg and 29.8 µg/kg).</p>","PeriodicalId":19060,"journal":{"name":"Mycotoxin Research","volume":" ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142801399","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-05DOI: 10.1007/s12550-024-00578-7
Léa K A Bayala-Yaї, Philippe A Nikièma, Bazoin S R Bazié, Fulbert Nikièma, Jacques Simpore
The infant flours produced in Burkina Faso are essentially a mixture of cereals and legumes. These raw materials are frequently contaminated with mycotoxins which pose a huge food safety and public health threat. The objective of this study was to determine mycotoxin levels in raw materials and infant flours in Ouagadougou and to investigate the impact of decontamination on the raw materials used in infant flour production. A total of 22 cereals and 17 legumes as raw materials and 26 infant flour samples were analysed for aflatoxins, fumonisin B1 (FB1), and ochratoxin A (OTA) by liquid chromatography coupled to tandem mass spectrometry, while saline treatment and hand-sorting of grains in mycotoxin reduction were tested. All the samples of raw materials and infant flours were contaminated with aflatoxins, whereas 20.5% and 38.5% of raw materials and 57.7% and 61.5% of infant flours, respectively, were contaminated by FB1 and OTA. These decontamination assays significantly reduced the levels of mycotoxins. AFB1 was reduced by 48% after soaking of maize for 6 h in a 6% NaCl solution. Sorting resulted in a 92% reduction in AFB1 content in peanut. However, soaking in saline solution did not reduce the FB1 and OTA contents. Sorting did not also reduce FB1 contents in peanut. Sorting and soaking in 6% saline solution for 6 h are production processes that lead to a reduction in the level of contamination by aflatoxins in maize and peanut used as raw materials for infant flour production.
{"title":"Assessment of mycotoxins in infant flour and their decontamination in raw material during production processes in Ouagadougou.","authors":"Léa K A Bayala-Yaї, Philippe A Nikièma, Bazoin S R Bazié, Fulbert Nikièma, Jacques Simpore","doi":"10.1007/s12550-024-00578-7","DOIUrl":"https://doi.org/10.1007/s12550-024-00578-7","url":null,"abstract":"<p><p>The infant flours produced in Burkina Faso are essentially a mixture of cereals and legumes. These raw materials are frequently contaminated with mycotoxins which pose a huge food safety and public health threat. The objective of this study was to determine mycotoxin levels in raw materials and infant flours in Ouagadougou and to investigate the impact of decontamination on the raw materials used in infant flour production. A total of 22 cereals and 17 legumes as raw materials and 26 infant flour samples were analysed for aflatoxins, fumonisin B<sub>1</sub> (FB<sub>1</sub>), and ochratoxin A (OTA) by liquid chromatography coupled to tandem mass spectrometry, while saline treatment and hand-sorting of grains in mycotoxin reduction were tested. All the samples of raw materials and infant flours were contaminated with aflatoxins, whereas 20.5% and 38.5% of raw materials and 57.7% and 61.5% of infant flours, respectively, were contaminated by FB<sub>1</sub> and OTA. These decontamination assays significantly reduced the levels of mycotoxins. AFB<sub>1</sub> was reduced by 48% after soaking of maize for 6 h in a 6% NaCl solution. Sorting resulted in a 92% reduction in AFB<sub>1</sub> content in peanut. However, soaking in saline solution did not reduce the FB<sub>1</sub> and OTA contents. Sorting did not also reduce FB<sub>1</sub> contents in peanut. Sorting and soaking in 6% saline solution for 6 h are production processes that lead to a reduction in the level of contamination by aflatoxins in maize and peanut used as raw materials for infant flour production.</p>","PeriodicalId":19060,"journal":{"name":"Mycotoxin Research","volume":" ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142786188","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-30DOI: 10.1007/s12550-024-00574-x
Sambwe Fundikira, Rashid Suleiman, Sarah De Saeger, Marthe De Boevre, Martin Kimanya
Aflatoxins are toxic secondary metabolites produced by Aspergillus species that infect staple foods like maize causing threat to public health and economic impacts. The use of atoxigenic Aspergillus species is considered one of the promising technologies to prevent aflatoxin contamination in maize. Tanzania approved the use of aflatoxin biocontrol (Aflasafe®) in 2018 and introduced it to eight districts. Adoption and effectiveness of this technology depend on many factors including application of pre- and post-harvest practices. There is scant information on awareness of biocontrol and factors which influence the adoption and effectiveness of this technology. A cross-sectional study was conducted in Tanzania to assess awareness and identify factors influencing adoption of the technology. Data was collected from 334 smallholder farmers in Kiteto and Chemba districts and analyzed using SPSS version 20; p-values < 0.05 using a two-tailed test were considered statistically significant. Results indicated 95.4% are not aware and that only 2.7% of the farmers had used biocontrol technology. The use of biocontrol was significantly associated with high income level (p = 0.001) and exposure to print media (p = 0.03) and radio (p = 0.008). The use of hybrid seed (p = 0.01), grazing (p = 0.017), and rotation of crops on yearly basis (p = 0.024) were also significantly associated with the use of biocontrol. Income limits the use of biocontrol, requiring government subsidies for Aflasafe and a premium market for aflatoxin-free maize. Aflatoxin awareness and sensitization on adherence to good pre-harvest practices should be emphasized to enhance adoption of the technology.
{"title":"Aflatoxin awareness and preventive agricultural practices are key to adoption of biocontrol among maize smallholder farmers in Tanzania.","authors":"Sambwe Fundikira, Rashid Suleiman, Sarah De Saeger, Marthe De Boevre, Martin Kimanya","doi":"10.1007/s12550-024-00574-x","DOIUrl":"https://doi.org/10.1007/s12550-024-00574-x","url":null,"abstract":"<p><p>Aflatoxins are toxic secondary metabolites produced by Aspergillus species that infect staple foods like maize causing threat to public health and economic impacts. The use of atoxigenic Aspergillus species is considered one of the promising technologies to prevent aflatoxin contamination in maize. Tanzania approved the use of aflatoxin biocontrol (Aflasafe®) in 2018 and introduced it to eight districts. Adoption and effectiveness of this technology depend on many factors including application of pre- and post-harvest practices. There is scant information on awareness of biocontrol and factors which influence the adoption and effectiveness of this technology. A cross-sectional study was conducted in Tanzania to assess awareness and identify factors influencing adoption of the technology. Data was collected from 334 smallholder farmers in Kiteto and Chemba districts and analyzed using SPSS version 20; p-values < 0.05 using a two-tailed test were considered statistically significant. Results indicated 95.4% are not aware and that only 2.7% of the farmers had used biocontrol technology. The use of biocontrol was significantly associated with high income level (p = 0.001) and exposure to print media (p = 0.03) and radio (p = 0.008). The use of hybrid seed (p = 0.01), grazing (p = 0.017), and rotation of crops on yearly basis (p = 0.024) were also significantly associated with the use of biocontrol. Income limits the use of biocontrol, requiring government subsidies for Aflasafe and a premium market for aflatoxin-free maize. Aflatoxin awareness and sensitization on adherence to good pre-harvest practices should be emphasized to enhance adoption of the technology.</p>","PeriodicalId":19060,"journal":{"name":"Mycotoxin Research","volume":" ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142770693","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-27DOI: 10.1007/s12550-024-00575-w
Erasmus N Tang, Sali A Ndindeng, Geoffrey Onaga, Alejandro Ortega-Beltran, Titilayo D O Falade, Rousseau Djouaka, Michael Frei
Mycotoxins such as aflatoxins (AFs), fumonisins (FBs), zearalenone (ZEN), and deoxynivalenol (DON) pose a risk to public health due to their carcinogenic potency (AFs and FBs) and anti-nutritional effects. The hazards associated with mycotoxins are accentuated where food management practices, control, and regulatory systems from farm to plate are sub-optimal. Information on the frequency of these mycotoxins in rice commercialized in markets in sub-Sahara Africa (SSA) is limited. The current study examined AF concentrations in 527 rice samples collected from 54 markets in five SSA countries. Grain quality characteristics, processing methods, and origin of samples were contrasted with toxin levels. In total, 72% of the samples had detectable AFs levels (range = 3.0 to 89.8 µg/kg). Forty-seven percent (47%) of the samples had AFs above 4 µg/kg, the European Union maximum level (ML), and were evaluated for cooccurrence with FBs, ZEN, and DON. Total AFs and ZEN cooccurred in 40% of the samples, and 30% of the positive ZEN samples had concentrations above the ML of 75 µg/kg. Total AFs did not co-occur with FBs and DON. Multivariate analysis revealed that length-to-width ratio (p < 0.0001), mixed variety for width (p = 0.04), and chalkiness (p = 0.009) significantly influenced aflatoxin concentrations. Slender grains had higher AFs concentrations than bold and medium grains (p < 0.0001). Possible strategies to mitigate mycotoxin contamination in rice include improving grain quality traits and practicing proper drying and hermetic storage before and after milling. These findings provide valuable insights for both domestic and international actors in establishing and strengthening regulations and management systems to mitigate rice mycotoxin contamination.
黄曲霉毒素(AFs)、伏马菌毒素(FBs)、玉米赤霉烯酮(ZEN)和脱氧雪腐镰刀菌烯醇(DON)等霉菌毒素具有致癌性(AFs 和 FBs)和抗营养作用,对公众健康构成风险。如果从农场到餐桌的食品管理方法、控制和监管系统不尽如人意,霉菌毒素的危害就会更加严重。有关这些霉菌毒素在撒哈拉以南非洲(SSA)市场销售的大米中出现频率的信息十分有限。本研究对从五个撒哈拉以南非洲国家的 54 个市场采集的 527 份大米样品中的 AF 浓度进行了检测。谷物质量特征、加工方法和样品产地与毒素含量进行了对比。总共有 72% 的样品中检测到了 AFs 含量(范围 = 3.0 至 89.8 µg/kg)。47%的样本中 AFs 含量超过 4 µg/kg,即欧盟最高含量 (ML),并与 FBs、ZEN 和 DON 进行了共生评估。40% 的样本中出现了总 AFs 和 ZEN 共存现象,30% 的 ZEN 阳性样本的浓度超过了 75 µg/kg 的 ML。总甲酸甲酯与 FBs 和 DON 并不共存。多变量分析表明,长宽比(p
{"title":"Mycotoxin concentrations in rice are affected by chalkiness, grain shape, processing type, and grain origin.","authors":"Erasmus N Tang, Sali A Ndindeng, Geoffrey Onaga, Alejandro Ortega-Beltran, Titilayo D O Falade, Rousseau Djouaka, Michael Frei","doi":"10.1007/s12550-024-00575-w","DOIUrl":"https://doi.org/10.1007/s12550-024-00575-w","url":null,"abstract":"<p><p>Mycotoxins such as aflatoxins (AFs), fumonisins (FBs), zearalenone (ZEN), and deoxynivalenol (DON) pose a risk to public health due to their carcinogenic potency (AFs and FBs) and anti-nutritional effects. The hazards associated with mycotoxins are accentuated where food management practices, control, and regulatory systems from farm to plate are sub-optimal. Information on the frequency of these mycotoxins in rice commercialized in markets in sub-Sahara Africa (SSA) is limited. The current study examined AF concentrations in 527 rice samples collected from 54 markets in five SSA countries. Grain quality characteristics, processing methods, and origin of samples were contrasted with toxin levels. In total, 72% of the samples had detectable AFs levels (range = 3.0 to 89.8 µg/kg). Forty-seven percent (47%) of the samples had AFs above 4 µg/kg, the European Union maximum level (ML), and were evaluated for cooccurrence with FBs, ZEN, and DON. Total AFs and ZEN cooccurred in 40% of the samples, and 30% of the positive ZEN samples had concentrations above the ML of 75 µg/kg. Total AFs did not co-occur with FBs and DON. Multivariate analysis revealed that length-to-width ratio (p < 0.0001), mixed variety for width (p = 0.04), and chalkiness (p = 0.009) significantly influenced aflatoxin concentrations. Slender grains had higher AFs concentrations than bold and medium grains (p < 0.0001). Possible strategies to mitigate mycotoxin contamination in rice include improving grain quality traits and practicing proper drying and hermetic storage before and after milling. These findings provide valuable insights for both domestic and international actors in establishing and strengthening regulations and management systems to mitigate rice mycotoxin contamination.</p>","PeriodicalId":19060,"journal":{"name":"Mycotoxin Research","volume":" ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142730995","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-16DOI: 10.1007/s12550-024-00571-0
Tatenda Clive Murashiki, Arthur John Mazhandu, Rutendo B L Zinyama-Gutsire, Isaac Mutingwende, Lovemore Ronald Mazengera, Kerina Duri
Aflatoxin B1 (AFB1) and fumonisin B1 (FB1) are poisons that contaminate poorly stored staple foods in resource-limited settings. Antenatal AFB1 and FB1 exposure may cause anaemia. We aimed to determine the associations of urinary aflatoxin M1 (AFM1) and FB1, biomarkers of AFB1 and FB1 exposure, respectively, with erythrocyte parameters and anaemia. A retrospective cross-sectional study was conducted in 68 HIV-infected and 61 HIV-uninfected pregnant women ≥ 20 weeks gestational age in Harare, Zimbabwe. AFM1 and FB1 were measured in urine via competitive ELISA, and levels were grouped into tertiles. The erythrocyte parameters assessed were haemoglobin (Hb), mean corpuscular volume, mean corpuscular haemoglobin, mean corpuscular haemoglobin concentration, red blood cell (RBC), haematocrit (HCT), and red blood cell distribution width. Associations of urinary AFM1 and FB1 with erythrocyte parameters, and anaemia were assessed in a multiple regression controlled for potential confounders. The presence of FB1 in urine decreased Hb levels in all women (β= -0.98, 95% CI: -1.94, 0.02) and HIV-uninfected (β= -1.99, 95% CI: -3.71, -0.26). FB1 tertile 3 decreased Hb levels (β= -0.88, 95% CI: -1.74, 0.01) and HCT levels (β= -2.65, 95% CI: -5.26, 0.03) in HIV-infected. AFM1 tertile 2 decreased RBC levels in HIV-infected (β= -0.34, 95% CI: -0.71, -0.03). The presence of FB1 in urine increased anaemia risk in HIV-uninfected (OR: 10.68 95% CI: 1.02, 112.34). AFM1 tertile 2 increased macrocytic anaemia risk in HIV-infected (OR: 13.72, 95% CI: 0.92, 203.55). There is need to ensure food safety through monitoring and nutritional interventions to improve maternal-infant health outcomes.
{"title":"Association between anaemia and aflatoxin B<sub>1</sub> and fumonisin B<sub>1</sub> exposure in HIV-infected and HIV-uninfected pregnant women from Harare, Zimbabwe.","authors":"Tatenda Clive Murashiki, Arthur John Mazhandu, Rutendo B L Zinyama-Gutsire, Isaac Mutingwende, Lovemore Ronald Mazengera, Kerina Duri","doi":"10.1007/s12550-024-00571-0","DOIUrl":"https://doi.org/10.1007/s12550-024-00571-0","url":null,"abstract":"<p><p>Aflatoxin B<sub>1</sub> (AFB<sub>1</sub>) and fumonisin B<sub>1</sub> (FB<sub>1</sub>) are poisons that contaminate poorly stored staple foods in resource-limited settings. Antenatal AFB<sub>1</sub> and FB<sub>1</sub> exposure may cause anaemia. We aimed to determine the associations of urinary aflatoxin M<sub>1</sub> (AFM<sub>1</sub>) and FB<sub>1</sub>, biomarkers of AFB<sub>1</sub> and FB<sub>1</sub> exposure, respectively, with erythrocyte parameters and anaemia. A retrospective cross-sectional study was conducted in 68 HIV-infected and 61 HIV-uninfected pregnant women ≥ 20 weeks gestational age in Harare, Zimbabwe. AFM<sub>1</sub> and FB<sub>1</sub> were measured in urine via competitive ELISA, and levels were grouped into tertiles. The erythrocyte parameters assessed were haemoglobin (Hb), mean corpuscular volume, mean corpuscular haemoglobin, mean corpuscular haemoglobin concentration, red blood cell (RBC), haematocrit (HCT), and red blood cell distribution width. Associations of urinary AFM<sub>1</sub> and FB<sub>1</sub> with erythrocyte parameters, and anaemia were assessed in a multiple regression controlled for potential confounders. The presence of FB<sub>1</sub> in urine decreased Hb levels in all women (β= -0.98, 95% CI: -1.94, 0.02) and HIV-uninfected (β= -1.99, 95% CI: -3.71, -0.26). FB<sub>1</sub> tertile 3 decreased Hb levels (β= -0.88, 95% CI: -1.74, 0.01) and HCT levels (β= -2.65, 95% CI: -5.26, 0.03) in HIV-infected. AFM<sub>1</sub> tertile 2 decreased RBC levels in HIV-infected (β= -0.34, 95% CI: -0.71, -0.03). The presence of FB<sub>1</sub> in urine increased anaemia risk in HIV-uninfected (OR: 10.68 95% CI: 1.02, 112.34). AFM<sub>1</sub> tertile 2 increased macrocytic anaemia risk in HIV-infected (OR: 13.72, 95% CI: 0.92, 203.55). There is need to ensure food safety through monitoring and nutritional interventions to improve maternal-infant health outcomes.</p>","PeriodicalId":19060,"journal":{"name":"Mycotoxin Research","volume":" ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142644495","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}