Blood flow-bearing physical forces, endothelial glycocalyx, and liver enzyme mobilization: A hypothesis.

IF 3.3 2区 医学 Q1 PHYSIOLOGY Journal of General Physiology Pub Date : 2024-03-04 Epub Date: 2024-01-17 DOI:10.1085/jgp.202313462
Lorena Carmina Hernández-Espinosa, Rolando Hernández-Muñoz
{"title":"Blood flow-bearing physical forces, endothelial glycocalyx, and liver enzyme mobilization: A hypothesis.","authors":"Lorena Carmina Hernández-Espinosa, Rolando Hernández-Muñoz","doi":"10.1085/jgp.202313462","DOIUrl":null,"url":null,"abstract":"<p><p>Numerous elements involved in shear stress-induced signaling have been identified, recognizing their functions as mechanotransducing ion channels situated at cellular membranes. This form of mechanical signaling relies on transmembrane proteins and cytoplasmic proteins that restructure the cytoskeleton, contributing to mechanotransduction cascades. Notably, blood flow generates mechanical forces that significantly impact the structure and remodeling of blood vessels. The primary regulation of blood vessel responses occurs through hemodynamic forces acting on the endothelium. These mechanical events intricately govern endothelial biophysical, biochemical, and genetic responses. Endothelial cells, positioned on the intimal surface of blood vessels, have the capability to express components of the glycocalyx. This endothelial structure emerges as a pivotal factor in mechanotransduction and the regulation of vascular tone. The endothelial glycocalyx assumes diverse roles in both health and disease. Our findings propose a connection between the release of specific enzymes from the rat liver and variations in the hepatic blood flow/mass ratio. Importantly, this phenomenon is not correlated with liver necrosis. Consequently, this review serves as an exploration of the potential involvement of membrane proteins in a hypothetical mechanotransducing phenomenon capable of controlling the release of liver enzymes.</p>","PeriodicalId":54828,"journal":{"name":"Journal of General Physiology","volume":"156 3","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10794122/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of General Physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1085/jgp.202313462","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/17 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Numerous elements involved in shear stress-induced signaling have been identified, recognizing their functions as mechanotransducing ion channels situated at cellular membranes. This form of mechanical signaling relies on transmembrane proteins and cytoplasmic proteins that restructure the cytoskeleton, contributing to mechanotransduction cascades. Notably, blood flow generates mechanical forces that significantly impact the structure and remodeling of blood vessels. The primary regulation of blood vessel responses occurs through hemodynamic forces acting on the endothelium. These mechanical events intricately govern endothelial biophysical, biochemical, and genetic responses. Endothelial cells, positioned on the intimal surface of blood vessels, have the capability to express components of the glycocalyx. This endothelial structure emerges as a pivotal factor in mechanotransduction and the regulation of vascular tone. The endothelial glycocalyx assumes diverse roles in both health and disease. Our findings propose a connection between the release of specific enzymes from the rat liver and variations in the hepatic blood flow/mass ratio. Importantly, this phenomenon is not correlated with liver necrosis. Consequently, this review serves as an exploration of the potential involvement of membrane proteins in a hypothetical mechanotransducing phenomenon capable of controlling the release of liver enzymes.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
血流承载的物理力、内皮糖萼和肝酶动员:一个假设
参与剪切应力诱导信号传导的众多元素已被确认,它们的功能是位于细胞膜上的机械传导离子通道。这种形式的机械信号依靠跨膜蛋白和细胞质蛋白来重组细胞骨架,从而促进机械传导级联。值得注意的是,血流产生的机械力会对血管的结构和重塑产生重大影响。对血管反应的主要调节是通过作用于血管内皮的血液动力来实现的。这些机械事件错综复杂地控制着内皮的生物物理、生物化学和遗传反应。内皮细胞位于血管内膜表面,具有表达糖萼成分的能力。这种内皮结构是机械传导和调节血管张力的关键因素。内皮糖萼在健康和疾病中发挥着不同的作用。我们的研究结果表明,大鼠肝脏中特定酶的释放与肝血流量/质量比的变化之间存在联系。重要的是,这种现象与肝坏死无关。因此,这篇综述探讨了膜蛋白可能参与能够控制肝脏酶释放的假定机械传导现象。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.00
自引率
10.50%
发文量
88
审稿时长
6-12 weeks
期刊介绍: General physiology is the study of biological mechanisms through analytical investigations, which decipher the molecular and cellular mechanisms underlying biological function at all levels of organization. The mission of Journal of General Physiology (JGP) is to publish mechanistic and quantitative molecular and cellular physiology of the highest quality, to provide a best-in-class author experience, and to nurture future generations of independent researchers. The major emphasis is on physiological problems at the cellular and molecular level.
期刊最新文献
Regulation of NMDAR activation efficiency by environmental factors and subunit composition. Null method to estimate the maximal PA at subsaturating concentrations of agonist. Functional role of myosin-binding protein H in thick filaments of developing vertebrate fast-twitch skeletal muscle. Mechanism of acid-sensing ion channel modulation by Hi1a. Myosin-binding protein-H: Not just filler.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1