Tianyue Su, Weiwei Teng, Minghui Chu, Yucheng Su, Libo Zhou
{"title":"Comparing the accuracies of freehand, static computer-assisted and robot-assisted dental implant placements: an in vitro study.","authors":"Tianyue Su, Weiwei Teng, Minghui Chu, Yucheng Su, Libo Zhou","doi":"10.3290/j.ijcd.b4870451","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>To compare the accuracies among three oral implant surgical techniques: freehand (FH), static computer-assisted implant surgery (sCAIS), and robotic computer-assisted implant surgery (rCAIS).</p><p><strong>Methods: </strong>The polyurethane and bovine femur implant models were fabricated, and 126 and 96 implant sites were designed on them. The implant sites were divided into three groups: FH, sCAIS, and rCAIS, according to the implantation method. The deviation between the actual implant position and the planned position was analyzed and compared by cone beam computed tomography.</p><p><strong>Results: </strong>In the polyurethane model test, the entry deviation, entry-level deviation, apical deviation, apical level deviation, and angle deviation in sCAIS and rCAIS groups were significantly reduced compared with those in the FH group (P<0.05). No significant differences were observed in all kinds of deviations between the sCAIS and rCAIS groups (P>0.05). In the bovine femur model test, the entry deviation, entry-level deviation, apical deviation, apical level deviation, and angle deviation in both sCAIS and rCAIS groups were significantly reduced compared with those in the FH group (P<0.05). No significant differences were observed in all kinds of deviations between the sCAIS and rCAIS groups (P>0.05).</p><p><strong>Conclusion: </strong>This in vitro study shows that the rCAIS technique is superior to the freehand, but has the same accuracy as the sCAIS.</p>","PeriodicalId":48666,"journal":{"name":"International Journal of Computerized Dentistry","volume":"0 0","pages":"0"},"PeriodicalIF":1.8000,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computerized Dentistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3290/j.ijcd.b4870451","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: To compare the accuracies among three oral implant surgical techniques: freehand (FH), static computer-assisted implant surgery (sCAIS), and robotic computer-assisted implant surgery (rCAIS).
Methods: The polyurethane and bovine femur implant models were fabricated, and 126 and 96 implant sites were designed on them. The implant sites were divided into three groups: FH, sCAIS, and rCAIS, according to the implantation method. The deviation between the actual implant position and the planned position was analyzed and compared by cone beam computed tomography.
Results: In the polyurethane model test, the entry deviation, entry-level deviation, apical deviation, apical level deviation, and angle deviation in sCAIS and rCAIS groups were significantly reduced compared with those in the FH group (P<0.05). No significant differences were observed in all kinds of deviations between the sCAIS and rCAIS groups (P>0.05). In the bovine femur model test, the entry deviation, entry-level deviation, apical deviation, apical level deviation, and angle deviation in both sCAIS and rCAIS groups were significantly reduced compared with those in the FH group (P<0.05). No significant differences were observed in all kinds of deviations between the sCAIS and rCAIS groups (P>0.05).
Conclusion: This in vitro study shows that the rCAIS technique is superior to the freehand, but has the same accuracy as the sCAIS.
期刊介绍:
This journal explores the myriad innovations in the emerging field of computerized dentistry and how to integrate them into clinical practice. The bulk of the journal is devoted to the science of computer-assisted dentistry, with research articles and clinical reports on all aspects of computer-based diagnostic and therapeutic applications, with special emphasis placed on CAD/CAM and image-processing systems. Articles also address the use of computer-based communication to support patient care, assess the quality of care, and enhance clinical decision making. The journal is presented in a bilingual format, with each issue offering three types of articles: science-based, application-based, and national society reports.