{"title":"Sharp gradient estimate, rigidity and almost rigidity of Green functions on non-parabolic RCD(0, N) spaces","authors":"Shouhei Honda, Yuanlin Peng","doi":"10.1017/prm.2024.131","DOIUrl":null,"url":null,"abstract":"<p>Inspired by a result in T. H. Colding. (16). <span>Acta. Math.</span> <span>209</span>(2) (2012), 229-263 [16] of Colding, the present paper studies the Green function <span><span><span data-mathjax-type=\"texmath\"><span>$G$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240116102450072-0592:S0308210523001312:S0308210523001312_inline2.png\"/></span></span> on a non-parabolic <span><span><span data-mathjax-type=\"texmath\"><span>$\\operatorname {RCD}(0,\\,N)$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240116102450072-0592:S0308210523001312:S0308210523001312_inline3.png\"/></span></span> space <span><span><span data-mathjax-type=\"texmath\"><span>$(X,\\, \\mathsf {d},\\, \\mathfrak {m})$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240116102450072-0592:S0308210523001312:S0308210523001312_inline4.png\"/></span></span> for some finite <span><span><span data-mathjax-type=\"texmath\"><span>$N>2$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240116102450072-0592:S0308210523001312:S0308210523001312_inline5.png\"/></span></span>. Defining <span><span><span data-mathjax-type=\"texmath\"><span>$\\mathsf {b}_x=G(x,\\, \\cdot )^{\\frac {1}{2-N}}$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240116102450072-0592:S0308210523001312:S0308210523001312_inline6.png\"/></span></span> for a point <span><span><span data-mathjax-type=\"texmath\"><span>$x \\in X$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240116102450072-0592:S0308210523001312:S0308210523001312_inline7.png\"/></span></span>, which plays a role of a smoothed distance function from <span><span><span data-mathjax-type=\"texmath\"><span>$x$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240116102450072-0592:S0308210523001312:S0308210523001312_inline8.png\"/></span></span>, we prove that the gradient <span><span><span data-mathjax-type=\"texmath\"><span>$|\\nabla \\mathsf {b}_x|$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240116102450072-0592:S0308210523001312:S0308210523001312_inline9.png\"/></span></span> has the canonical pointwise representative with the sharp upper bound in terms of the <span><span><span data-mathjax-type=\"texmath\"><span>$N$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240116102450072-0592:S0308210523001312:S0308210523001312_inline10.png\"/></span></span>-volume density <span><span><span data-mathjax-type=\"texmath\"><span>$\\nu _x=\\lim _{r\\to 0^+}\\frac {\\mathfrak {m} (B_r(x))}{r^N}$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240116102450072-0592:S0308210523001312:S0308210523001312_inline11.png\"/></span></span> of <span><span><span data-mathjax-type=\"texmath\"><span>$\\mathfrak {m}$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240116102450072-0592:S0308210523001312:S0308210523001312_inline12.png\"/></span></span> at <span><span><span data-mathjax-type=\"texmath\"><span>$x$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240116102450072-0592:S0308210523001312:S0308210523001312_inline13.png\"/></span></span>;<span><span data-mathjax-type=\"texmath\"><span>\\[ |\\nabla \\mathsf{b}_x|(y) \\le \\left(N(N-2)\\nu_x\\right)^{\\frac{1}{N-2}}, \\quad \\text{for any }y \\in X \\setminus \\{x\\}. \\]</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240116102450072-0592:S0308210523001312:S0308210523001312_eqnU1.png\"/></span>Moreover the rigidity is obtained, namely, the upper bound is attained at a point <span><span><span data-mathjax-type=\"texmath\"><span>$y \\in X \\setminus \\{x\\}$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240116102450072-0592:S0308210523001312:S0308210523001312_inline14.png\"/></span></span> if and only if the space is isomorphic to the <span><span><span data-mathjax-type=\"texmath\"><span>$N$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240116102450072-0592:S0308210523001312:S0308210523001312_inline15.png\"/></span></span>-metric measure cone over an <span><span><span data-mathjax-type=\"texmath\"><span>$\\operatorname {RCD}(N-2,\\, N-1)$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240116102450072-0592:S0308210523001312:S0308210523001312_inline16.png\"/></span></span> space. In the case when <span><span><span data-mathjax-type=\"texmath\"><span>$x$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240116102450072-0592:S0308210523001312:S0308210523001312_inline17.png\"/></span></span> is an <span><span><span data-mathjax-type=\"texmath\"><span>$N$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240116102450072-0592:S0308210523001312:S0308210523001312_inline18.png\"/></span></span>-regular point, the rigidity states an isomorphism to the <span><span><span data-mathjax-type=\"texmath\"><span>$N$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240116102450072-0592:S0308210523001312:S0308210523001312_inline19.png\"/></span></span>-dimensional Euclidean space <span><span><span data-mathjax-type=\"texmath\"><span>$\\mathbb {R}^N$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240116102450072-0592:S0308210523001312:S0308210523001312_inline20.png\"/></span></span>, thus, this extends the result of Colding to <span><span><span data-mathjax-type=\"texmath\"><span>$\\operatorname {RCD}(0,\\,N)$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240116102450072-0592:S0308210523001312:S0308210523001312_inline21.png\"/></span></span> spaces. It is emphasized that the almost rigidities are also proved, which are new even in the smooth framework.</p>","PeriodicalId":54560,"journal":{"name":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","volume":"23 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/prm.2024.131","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Inspired by a result in T. H. Colding. (16). Acta. Math.209(2) (2012), 229-263 [16] of Colding, the present paper studies the Green function $G$ on a non-parabolic $\operatorname {RCD}(0,\,N)$ space $(X,\, \mathsf {d},\, \mathfrak {m})$ for some finite $N>2$. Defining $\mathsf {b}_x=G(x,\, \cdot )^{\frac {1}{2-N}}$ for a point $x \in X$, which plays a role of a smoothed distance function from $x$, we prove that the gradient $|\nabla \mathsf {b}_x|$ has the canonical pointwise representative with the sharp upper bound in terms of the $N$-volume density $\nu _x=\lim _{r\to 0^+}\frac {\mathfrak {m} (B_r(x))}{r^N}$ of $\mathfrak {m}$ at $x$;\[ |\nabla \mathsf{b}_x|(y) \le \left(N(N-2)\nu_x\right)^{\frac{1}{N-2}}, \quad \text{for any }y \in X \setminus \{x\}. \]Moreover the rigidity is obtained, namely, the upper bound is attained at a point $y \in X \setminus \{x\}$ if and only if the space is isomorphic to the $N$-metric measure cone over an $\operatorname {RCD}(N-2,\, N-1)$ space. In the case when $x$ is an $N$-regular point, the rigidity states an isomorphism to the $N$-dimensional Euclidean space $\mathbb {R}^N$, thus, this extends the result of Colding to $\operatorname {RCD}(0,\,N)$ spaces. It is emphasized that the almost rigidities are also proved, which are new even in the smooth framework.
期刊介绍:
A flagship publication of The Royal Society of Edinburgh, Proceedings A is a prestigious, general mathematics journal publishing peer-reviewed papers of international standard across the whole spectrum of mathematics, but with the emphasis on applied analysis and differential equations.
An international journal, publishing six issues per year, Proceedings A has been publishing the highest-quality mathematical research since 1884. Recent issues have included a wealth of key contributors and considered research papers.