Jian Chen , Fei Lu , Yuanzhe Liu , Sheng Peng , Zhiming Cai , Fu Mo
{"title":"Cross trust: A decentralized MA-ABE mechanism for cross-border identity authentication","authors":"Jian Chen , Fei Lu , Yuanzhe Liu , Sheng Peng , Zhiming Cai , Fu Mo","doi":"10.1016/j.ijcip.2024.100661","DOIUrl":null,"url":null,"abstract":"<div><p>With an increasing demand for authenticated data exchange between jurisdictions, ensuring the privacy and security of data interactions is crucial for national security, public health, and economic vitality, becoming a fundamental national infrastructure. Current solutions can be categorized into two types: fully decentralized autonomous systems based on blockchains or centralized solutions that rely on authoritative centers such as certification authorities (CAs). In reality, a balance needs to be struck between guaranteed authority and privacy independence. A certain authority is needed as an authorization guarantee, and decentralization is required to ensure privacy and the independence of the authority. This paper proposes a novel scheme, CT-MA-ABE (Cross-Trust Multiple Authorization Attribute-Based Encryption), to address these issues by implementing MA-ABE for cross-border institutional authorization interactions, utilize blockchain certification authority (BCA) for credibility and encryption-based authorization to protect attribute data privacy. This solution integrates the role of 'notary' in cross-border interactions, addressing the supervision problem in fully decentralized approaches while also considering the trust issue in centralized systems. This paper also introduces the Universal Certificate Authority Pool (UCAP), an innovative hybrid federated authorization method, creatively utilizing the implied authorization conditions of attributes to create a flexible and transitive authorization mechanism based on attribute relationships and extensions, enhancing privacy protection and improving the speed of authorization matrix calculation. The successful deployment of the system between the legal jurisdictions in South China, Zhuhai and Macau as a critical infrastructure component for securing data interactions further demonstrates its effectiveness as a reliable and secure solution.</p></div>","PeriodicalId":49057,"journal":{"name":"International Journal of Critical Infrastructure Protection","volume":"44 ","pages":"Article 100661"},"PeriodicalIF":4.1000,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Critical Infrastructure Protection","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1874548224000027","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
With an increasing demand for authenticated data exchange between jurisdictions, ensuring the privacy and security of data interactions is crucial for national security, public health, and economic vitality, becoming a fundamental national infrastructure. Current solutions can be categorized into two types: fully decentralized autonomous systems based on blockchains or centralized solutions that rely on authoritative centers such as certification authorities (CAs). In reality, a balance needs to be struck between guaranteed authority and privacy independence. A certain authority is needed as an authorization guarantee, and decentralization is required to ensure privacy and the independence of the authority. This paper proposes a novel scheme, CT-MA-ABE (Cross-Trust Multiple Authorization Attribute-Based Encryption), to address these issues by implementing MA-ABE for cross-border institutional authorization interactions, utilize blockchain certification authority (BCA) for credibility and encryption-based authorization to protect attribute data privacy. This solution integrates the role of 'notary' in cross-border interactions, addressing the supervision problem in fully decentralized approaches while also considering the trust issue in centralized systems. This paper also introduces the Universal Certificate Authority Pool (UCAP), an innovative hybrid federated authorization method, creatively utilizing the implied authorization conditions of attributes to create a flexible and transitive authorization mechanism based on attribute relationships and extensions, enhancing privacy protection and improving the speed of authorization matrix calculation. The successful deployment of the system between the legal jurisdictions in South China, Zhuhai and Macau as a critical infrastructure component for securing data interactions further demonstrates its effectiveness as a reliable and secure solution.
期刊介绍:
The International Journal of Critical Infrastructure Protection (IJCIP) was launched in 2008, with the primary aim of publishing scholarly papers of the highest quality in all areas of critical infrastructure protection. Of particular interest are articles that weave science, technology, law and policy to craft sophisticated yet practical solutions for securing assets in the various critical infrastructure sectors. These critical infrastructure sectors include: information technology, telecommunications, energy, banking and finance, transportation systems, chemicals, critical manufacturing, agriculture and food, defense industrial base, public health and health care, national monuments and icons, drinking water and water treatment systems, commercial facilities, dams, emergency services, nuclear reactors, materials and waste, postal and shipping, and government facilities. Protecting and ensuring the continuity of operation of critical infrastructure assets are vital to national security, public health and safety, economic vitality, and societal wellbeing.
The scope of the journal includes, but is not limited to:
1. Analysis of security challenges that are unique or common to the various infrastructure sectors.
2. Identification of core security principles and techniques that can be applied to critical infrastructure protection.
3. Elucidation of the dependencies and interdependencies existing between infrastructure sectors and techniques for mitigating the devastating effects of cascading failures.
4. Creation of sophisticated, yet practical, solutions, for critical infrastructure protection that involve mathematical, scientific and engineering techniques, economic and social science methods, and/or legal and public policy constructs.