Jia-Hao Syu, Jerry Chun-Wei Lin, Gautam Srivastava
{"title":"Distributed Learning Mechanisms for Anomaly Detection in Privacy-Aware Energy Grid Management Systems","authors":"Jia-Hao Syu, Jerry Chun-Wei Lin, Gautam Srivastava","doi":"10.1145/3640341","DOIUrl":null,"url":null,"abstract":"<p>Smart grids have become an emerging topic due to net-zero emissions and the rapid development of artificial intelligence (AI) technology focused on achieving targeted energy distribution and maintaining operating reserves. In order to prevent cyber-physical attacks, issues related to the security and privacy of grid systems are receiving much attention from researchers. In this paper, privacy-aware energy grid management systems with anomaly detection networks and distributed learning mechanisms are proposed. The anomaly detection network consists of a server and a client learning network, which collaboratively learn patterns without sharing data, and periodically train and exchange knowledge. We also develop learning mechanisms with federated, distributed, and split learning to improve privacy and use Q-learning for decision-making to facilitate interpretability. To demonstrate the effectiveness and robustness of the proposed schemes, extensive simulations are conducted in different energy grid environments with different target distributions, ORRs, and attack scenarios. The experimental results show that the proposed schemes not only improve management performance but also enhance privacy and security levels. We also compare the management performance and privacy level of the different learning machines and provide usage recommendations.</p>","PeriodicalId":50910,"journal":{"name":"ACM Transactions on Sensor Networks","volume":"139 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Sensor Networks","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3640341","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Smart grids have become an emerging topic due to net-zero emissions and the rapid development of artificial intelligence (AI) technology focused on achieving targeted energy distribution and maintaining operating reserves. In order to prevent cyber-physical attacks, issues related to the security and privacy of grid systems are receiving much attention from researchers. In this paper, privacy-aware energy grid management systems with anomaly detection networks and distributed learning mechanisms are proposed. The anomaly detection network consists of a server and a client learning network, which collaboratively learn patterns without sharing data, and periodically train and exchange knowledge. We also develop learning mechanisms with federated, distributed, and split learning to improve privacy and use Q-learning for decision-making to facilitate interpretability. To demonstrate the effectiveness and robustness of the proposed schemes, extensive simulations are conducted in different energy grid environments with different target distributions, ORRs, and attack scenarios. The experimental results show that the proposed schemes not only improve management performance but also enhance privacy and security levels. We also compare the management performance and privacy level of the different learning machines and provide usage recommendations.
期刊介绍:
ACM Transactions on Sensor Networks (TOSN) is a central publication by the ACM in the interdisciplinary area of sensor networks spanning a broad discipline from signal processing, networking and protocols, embedded systems, information management, to distributed algorithms. It covers research contributions that introduce new concepts, techniques, analyses, or architectures, as well as applied contributions that report on development of new tools and systems or experiences and experiments with high-impact, innovative applications. The Transactions places special attention on contributions to systemic approaches to sensor networks as well as fundamental contributions.