{"title":"In Silico prediction of inhibitors for multiple transporters via machine learning methods.","authors":"Hao Duan, Chaofeng Lou, Yaxin Gu, Yimeng Wang, Weihua Li, Guixia Liu, Yun Tang","doi":"10.1002/minf.202300270","DOIUrl":null,"url":null,"abstract":"<p><p>Transporters play an indispensable role in facilitating the transport of nutrients, signaling molecules and the elimination of metabolites and toxins in human cells. Contemporary computational methods have been employed in the prediction of transporter inhibitors. However, these methods often focus on isolated endpoints, overlooking the interactions between transporters and lacking good interpretation. In this study, we integrated a comprehensive dataset and constructed models to assess the inhibitory effects on seven transporters. Both conventional machine learning and multi-task deep learning methods were employed. The results demonstrated that the MLT-GAT model achieved superior performance with an average AUC value of 0.882. It is noteworthy that our model excels not only in prediction performance but also in achieving robust interpretability, aided by GNN-Explainer. It provided valuable insights into transporter inhibition. The reliability of our model's predictions positioned it as a promising and valuable tool in the field of transporter inhibition research. Related data and code are available at https://gitee.com/wutiantian99/transporter_code.git.</p>","PeriodicalId":18853,"journal":{"name":"Molecular Informatics","volume":" ","pages":"e202300270"},"PeriodicalIF":2.8000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Informatics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/minf.202300270","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/6 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Transporters play an indispensable role in facilitating the transport of nutrients, signaling molecules and the elimination of metabolites and toxins in human cells. Contemporary computational methods have been employed in the prediction of transporter inhibitors. However, these methods often focus on isolated endpoints, overlooking the interactions between transporters and lacking good interpretation. In this study, we integrated a comprehensive dataset and constructed models to assess the inhibitory effects on seven transporters. Both conventional machine learning and multi-task deep learning methods were employed. The results demonstrated that the MLT-GAT model achieved superior performance with an average AUC value of 0.882. It is noteworthy that our model excels not only in prediction performance but also in achieving robust interpretability, aided by GNN-Explainer. It provided valuable insights into transporter inhibition. The reliability of our model's predictions positioned it as a promising and valuable tool in the field of transporter inhibition research. Related data and code are available at https://gitee.com/wutiantian99/transporter_code.git.
期刊介绍:
Molecular Informatics is a peer-reviewed, international forum for publication of high-quality, interdisciplinary research on all molecular aspects of bio/cheminformatics and computer-assisted molecular design. Molecular Informatics succeeded QSAR & Combinatorial Science in 2010.
Molecular Informatics presents methodological innovations that will lead to a deeper understanding of ligand-receptor interactions, macromolecular complexes, molecular networks, design concepts and processes that demonstrate how ideas and design concepts lead to molecules with a desired structure or function, preferably including experimental validation.
The journal''s scope includes but is not limited to the fields of drug discovery and chemical biology, protein and nucleic acid engineering and design, the design of nanomolecular structures, strategies for modeling of macromolecular assemblies, molecular networks and systems, pharmaco- and chemogenomics, computer-assisted screening strategies, as well as novel technologies for the de novo design of biologically active molecules. As a unique feature Molecular Informatics publishes so-called "Methods Corner" review-type articles which feature important technological concepts and advances within the scope of the journal.