Roshan Vilasrao Mankhair, Ayush Singh, Munish K Chandel
{"title":"Characterization of excavated plastic waste from an Indian dumpsite: Investigating extent of degradation and resource recovery potential.","authors":"Roshan Vilasrao Mankhair, Ayush Singh, Munish K Chandel","doi":"10.1177/0734242X231219654","DOIUrl":null,"url":null,"abstract":"<p><p>In recent years, the concept of landfill mining has gained a lot of traction in India, and tonnes of plastic waste is being excavated. The present shift towards a circular economy necessitates to explore the use of excavated plastic waste as a source of valuable materials and energy. However, the physicochemical characteristics of plastic waste change due to the degradation and weathering process in landfills, making its valorization difficult. The current study investigates the change in physicochemical characteristics of plastic waste with age from an Indian dumpsite to identify the potential valorization options. In addition, a material and energy flow analysis was performed considering incineration treatment of plastic waste. The plastic waste ranged between 3.6 and 21% in the dumpsite and has almost doubled in recent decades, owing to the increase in plastic waste generation in India. Polyethylene (high- and low-density) accounted for approximately 66% of the excavated plastic waste and had a lot of adhered surface impurities. Mechanical pre-treatment using a shredder was effective in the removal of the adhered impurities with a recovery rate of 50-70% for polyethylene and a higher recovery of 70-90% for other types of plastic. Changes in the surface morphology of plastic waste with aging were observed through Scanning Electron Microscopy. The Fourier Transform Infrared Spectroscopy results confirmed low degradation levels for aged plastic waste, which is also confirmed through the high level of oxygen detected. The material and energy flow analysis revealed that incinerating one tonne of excavated plastic waste could produce approximately 1410 kWh of electricity.</p>","PeriodicalId":23671,"journal":{"name":"Waste Management & Research","volume":" ","pages":"1168-1178"},"PeriodicalIF":3.7000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11608506/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Waste Management & Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1177/0734242X231219654","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/17 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
In recent years, the concept of landfill mining has gained a lot of traction in India, and tonnes of plastic waste is being excavated. The present shift towards a circular economy necessitates to explore the use of excavated plastic waste as a source of valuable materials and energy. However, the physicochemical characteristics of plastic waste change due to the degradation and weathering process in landfills, making its valorization difficult. The current study investigates the change in physicochemical characteristics of plastic waste with age from an Indian dumpsite to identify the potential valorization options. In addition, a material and energy flow analysis was performed considering incineration treatment of plastic waste. The plastic waste ranged between 3.6 and 21% in the dumpsite and has almost doubled in recent decades, owing to the increase in plastic waste generation in India. Polyethylene (high- and low-density) accounted for approximately 66% of the excavated plastic waste and had a lot of adhered surface impurities. Mechanical pre-treatment using a shredder was effective in the removal of the adhered impurities with a recovery rate of 50-70% for polyethylene and a higher recovery of 70-90% for other types of plastic. Changes in the surface morphology of plastic waste with aging were observed through Scanning Electron Microscopy. The Fourier Transform Infrared Spectroscopy results confirmed low degradation levels for aged plastic waste, which is also confirmed through the high level of oxygen detected. The material and energy flow analysis revealed that incinerating one tonne of excavated plastic waste could produce approximately 1410 kWh of electricity.
期刊介绍:
Waste Management & Research (WM&R) publishes peer-reviewed articles relating to both the theory and practice of waste management and research. Published on behalf of the International Solid Waste Association (ISWA) topics include: wastes (focus on solids), processes and technologies, management systems and tools, and policy and regulatory frameworks, sustainable waste management designs, operations, policies or practices.